Bachelor of Technology (Mechanical Engineering)

KURUKSHETRA UNIVERSITY KURUKSHETRA

Scheme of Studies/Examination

Semester I	
------------	--

S. No.	Course No.	Subject	L:T:P	Hours/Week	Exan	nination Scl	nedule (Ma	rks)	Duration of Exam (Hrs)
					Theory	Sessional	Practical	Total	
1	AS-201N/ HS-201N	<u>Mathematics-</u> <u>III/Fundamentals of</u> <u>Management</u>	3:1:0	4	75	25	0	100	3
2	ME-201N	Basic Thermodynamics	3:1:0	4	75	25	0	100	3
3	ME-203N	Mechanics of Solids-I	3:1:0	4	75	25	0	100	3
4	ME-205N	Machine Drawing	2:0:3	5	75	25	0	100	3
5	ME-207N	Kinematic of Machines	3:1:0	4	75	25	0	100	3
6	ME-209N	Material Science	4:0:0	4	75	25	0	100	3
7	ME-211N	Kinematic of Machines Lab	0:0:2	2	0	40	60	100	3
8	ME-213N	Material Science Lab	0:0:2	2	0	40	60	100	3
9	ME-215N	Mechanics of Solids Lab	0:0:2	2	0	40	60	100	3
		Total		31	450	270	180	900	
10	MPC-201N	Environmental Studies*	3:0:0	3	75	25	0	100	3

*Paper MPC-201 is a mandatory course which will be non-credit subject and student has to get pass marks in order to qualify the semester

Bachelor of Technology (Mechanical Engineering) KURUKSHETRA UNIVERSITY KURUKSHETRA Scheme of Studies/Examination

Semester IV

S. No.	Course No.	Subject	L:T:P	Hours/ Week	Exa	mination Sc	hedule (Mar	ks)	Duration of Exam
					Theory	Sessional	Practical	Total	(Hrs)
1	AS-201N/	Mathematics-III/Fundamentals of	3:1:0	4	75	25	0	100	3
	HS-201N	<u>Management</u>							
2	ME-202N	Production Technology-I	4:0:0	4	75	25	0	100	3
3	ME-204N	Steam Generation & Power	3:1:0	4	75	25	0	100	3
4	ME-206N	Mechanics of Solids-II	3:1:0	4	75	25	0	100	3
5	ME-208N	Fluid Mechanics	4:1:0	5	75	25	0	100	3
6	ME-210N	Dynamics of Machines	3:1:0	4	75	25	0	100	3
7	ME-214N	Fluid Mechanics Lab	0:0:2	2	0	40	60	100	3
8	ME-216N	Dynamics of Machines lab	0:0:2	2	0	40	60	100	3
9	ME-218N	Steam Generation & Power Lab	0:0:2	2	0	40	60	100	3
10	ME-220N	Production Technology Lab	0:0:3	3	0	40	60	100	3
		Total		34	450	310	240	1000	
11	MPC-202N	Energy Studies*	3:0:0	3	75	25		100	3

*Paper MPC-202 is a mandatory course which will be non-credit subject and student has to get pass marks in order to qualify the semester.

NOTE- 6 weeks hands on training to be done after IVth Semester Exams. Marks will be allotted after training report evaluation in 5th Semester.

Course No.	Course Title	Teaching		Allotr	nent of Ma	irks	Duration			
		Sc	hedu	le				of Exam		
		L	Т	P	Theory	Sessional	Total	(Hrs.)		
AS-201N	MATHEMATICS- III	3	1	0	75	25	100	3		
Purpose	To acquaint the stude	To acquaint the students with the basic use of PDE, Linear Programming problem								
	Fourier series and tran	sfor	ms, C	omplex	variables ar	nd Probabilit	y			
	(Cou	rse O	utcom	es (CO)					
CO-1	This section is concer	med	mainl	y with	Fourier seri	es. However	r, the und	lerlying ideas		
	can also be extended	to n	on-pei	riodic p	henomena. '	This leads to	o Fourier	integrals and		
	transforms which are very much useful in solving the initial and boundary value problems.									
CO-2	Students will learn ab	out	the for	rmation	and solutio	n the partial	different	ial equations.		
	First order PDE of any	y de	gree b	y using	Charpit's n	nethod will b	be discuss	sed in details.		
	In addition, how to s	olve	e hom	ogeneo	us linear PI	DE with con	nstant coe	efficients and		
	variable separable met	hod	and L	PP will	be covered	under this se	ection.			
CO-3	Complex analysis is a	conc	erned	with g	eneralization	n of the fam	niliar real	functions of		
	calculus and their det	aile	d kno	wledge	is an absol	ute necessity	y in prac	tical work to		
	solve engineering prob	olem	ns.							
CO-4	Probability theory provides models of probability distributions(theoretical models of									
	the observable reality involving chance effects) to be tested by statistical methods									
	which has various eng	gine	ering a	applicat	ions, for ins	stance, in tes	sting mate	erials, control		
	of production process	es, r	obotic	s, and a	automatizati	on in genera	l, produc	tion planning		
	and so on.									

UNIT-I

Fourier Analysis

Fourier series: Euler's formulae, Orthogonality conditions for the Sine and Cosine function, Dirichlet's conditions, Fourier expansion of functions having points of discontinuity, Change of interval, Odd and even functions, Half-range series.

Fourier Transforms: Fourier integrals, Fourier transforms, Fourier Cosine and Sine transforms, Properties of Fourier transforms, Convolution theorem, Parseval's identity, Fourier transforms of the derivative of a function, Application of transforms to boundary value problems (Heat conduction and vibrating string).

UNIT-II

Partial Differential Equations and LPP

Formation and Solutions of PDE, Lagrange's Linear PDE, First order non-linear PDE, Charpit's method, Homogeneous linear equations with constant coefficients, Method of separation of variables.

Solution of linear programming problems: using Graphical and Simplex methods.

UNIT-III

Theory of Complex Variables

A review of concept of functions of a complex variable, Limit, continuity, differentiability and analyticity of a function. Basic elementary complex functions (exponential functions, trigonometric & Hyperbolic functions, logarithmic functions) Cauchy-Riemann Equations.

Line integral in complex plane, definition of the complex line integral, basic properties, Cauchy's integral theorem, and Cauchy's integral formula, brief of Taylor's, Laurent's and Residue theorems (without proofs).

UNIT-IV

Probability theory:

A review of concepts of probability and random variables: definitions of probability, addition rule, conditional probability, multiplication rule, Conditional Probability, Mean, median, mode and standard deviation, Bayes' Theorem, Discrete and continuous random variables, probability mass, probability density and cumulative distribution functions, mathematical expectation, moments, moment generating function.

Standard Distributions: Binomial, Poisson and Normal distribution.

References Books:

- 1. E. Kreyszig : Advanced Engineering Mathematics, Wiley India.
- 2. B. V. Ramana: Engineering Mathematics, Tata McGraw Hill.
- 3. R.K. Jain, S.R.K. Iyengar: Advanced Engineering Mathematics, Taylor & Francis.
- 4. <u>Murray R Spiegel</u>: Schaum's Outline of Complex Variables, McGraw Hill Professional.
- 5. Michael D. Greenberg: Advanced Engineering Mathematics, Pearson Education, Prentice Hall.

~	a m	-							
Course	Course Title	Те	eachin	ıg	Allotr	nent of Ma	rks	Duration	
No.		Schedule						of Exam	
		L	Т	P	Theory	Sessional	Total	(Hrs.)	
ME-201N	BASIC	3	1	0	75	25	100	3	
	THERMODYNAMICS								
Purpose	The objective of this course is to make the students aware of Energy, Entropy,								
	Equilibrium, various law	Equilibrium, various laws of thermodynamics and relations. The course will help							
	the students to build the fundamental concepts in order to solve engineering								
	problems.								
	C	our	se Ou	tcome	s (CO)				
CO-1	State the thermodynamic	sys	tem, p	propert	ies and equ	ilibrium. D	escribe t	he ideal and	
	real gas laws.								
CO-2	Analyze and solve the fi	rst a	and se	cond la	aw of therm	nodynamics	problem	18.	
CO-3	Define entropy and its	cha	ange	for dif	ferent pro	cesses and	also so	lve entropy	
	problems								
CO-4	Describe the Availability and unavailability for steady and unsteady flow								
	processes. Also understand the concept of irreversibility.								
CO 5	Solve the problems rela	ated	to S	team	and plot tl	he processe	es on H	-S and T-S	
	diagram. Understand the	rmo	dynar	nics re	lations.				

Unit-I

Basic Concepts: Thermodynamics: Macroscopic and Microscopic Approach, Thermodynamic Systems, Surrounding and Boundary, Thermodynamic Property – Intensive and Extensive, Thermodynamic Equilibrium, State, Path, Process and Cycle, Quasi-static, Reversible and Irreversible Processes, Working Substance. Concept of Thermodynamic Work and Heat, Equality of Temperature, Zeroth Law of Thermodynamic and its utility.

Ideal and Real Gases: Concept of an Ideal Gas, Basic Gas Laws, Characteristic Gas Equation, Avagadro's law and Universal Gas Constant, P-V-T surface of an Ideal Gas. Vander Waal's Equation of state, Reduced Co-ordinates, Compressibility factor and law of corresponding states. Mixture of Gases, Bass, Mole and Volume Fraction, Gibson Dalton's law, Gas Constant and specific Heats, Entropy for a mixture of Gases.

Unit II

First Law of Thermodynamics: Energy and its Forms, Energy and 1st law of Thermodynamics, Internal Energy and Enthalpy, 1st Law Applied to Non-Flow Process, Steady Flow Process and Transient Flow Process, Throttling Process and Free Expansion Process. Numericals

Second Law Of Thermodynamics: Limitations of First Law, Thermal Reservoir Heat Source and Heat Sink, Heat Engine, Refrigerator and Heat Pump, Kelvin- Planck and Clausius Statements and Their Equivalence, Perpetual Motion Machine of Second Kind. Carnot Cycle, Carnot Heat Engine and Carnot Heat Pump, Carnot's Theorem and its Corollaries, Thermodynamic Temperature Scale, Numericals

Unit III

Entropy: Clausius Inequality and Entropy, Principle of Entropy Increase, Temperature-Entropy Plot, Entropy Change in Different Processes, Introduction to Third Law of thermodynamics. Availability, Irreversibility and Equilibrium: High and Low Grade Energy,

5

Availability and Unavailable Energy, Loss of Available Energy Due to Heat Transfer Through a Finite Temperature Difference, Availability of a Non-Flow or Closed System, Availability of a Steady Flow System, Helmholtz and Gibb's Functions, Effectiveness and Irreversibility. Numericals.

Unit IV

Pure Substance: Pure Substance and its Properties, Phase and Phase Transformation, Vaporization, Evaporation and Boiling, Saturated and Superheat Steam, Solid – Liquid – Vapour Equilibrium, T-V, P-V and P-T Plots During Steam Formation, Properties of Dry, Wet and Superheated Steam, Property Changes During Steam Processes, Temperature – Entropy (T-S) and Enthalpy – Entropy (H-S) Diagrams, Throttling and Measurement of Dryness Fraction of Steam. Numericals.

Thermodynamic Relations: T-Ds Relations, Enthalpy and Internal Energy as a Function of Independent Variables, Specific Heat Capacity Relations, Clapeyron Equation, Maxwell Relations.

Text Books:

1. Engineering Thermodynamics – C P Arora, Tata McGraw Hill

2. Engineering Thermodynamics – P K Nag, Tata McGraw Hill

Reference Books:

1. Thermal Science and Engineering – D S Kumar, S K Kataria and Sons

2. Engineering Thermodynamics -Work and Heat transfer – G F C Rogers and Maghew

Y R Longman

Course	Course Title	Te	achir	ng	Allotr	nent of Ma	rks	Duration	
No.		Sc	hedu	le				of Exam	
		L	Т	P	Theory	Sessional	Total	(Hrs.)	
ME-203N	MECHANICS OF	3	1	0	75	25	100	3	
	SOLIDS-I								
Purpose	The objective of this course is to make the students aware of Stress, Strain and								
	deformation of solids with the applications to beams, shafts and column and								
	struts. The course will help the students to build the fundamental concepts in								
	order to solve engineering problems								
		Co	urse (Dutcon	nes (CO)				
CO-1	Apply fundamental principles of mechanics & principles of equilibrium to								
	simple and practical	pro	blem	s of en	gineering, o	determine c	entroid a	and moment	
	of inertia of a di	ffer	ent g	geomet	rical shape	e and able	to un	derstand its	
	importance. Explain	n th	e bas	ic con	cepts of st	tress and s	strain an	d solve the	
	problems								
CO-2	Determine and calcu	ulate	e the	values	of principa	al stresses.	Express	the concept	
	of shear force and	ben	ding	mome	nt of beam	ns. Constr	uct shea	r force and	
~~~	bending moment dia	gra	m for	beams					
CO-3	Express the concept of torsion of circular shaft and able to solve the problems								
	on torsion of circular shalt. Inustrate and the solve the problems on bending								
	and snear stresses or	i be	ams					1 1	
CO-4	Solve the problems	on	colum	in and	strut and L	Perive the d	lerivation	ns and solve	
	the problems on slop	be al	na aei	nectior	1.				

### Unit-I

**Introduction:** Force, types of forces, Characteristics of a force, System of forces, Composition and resolution of forces, forces in equilibrium, principle and laws of equilibrium, Free body diagrams, Lami's Theorem, equations of equilibrium, Concept of center of gravity and centroid, centroid of various shapes: Triangle, circle, semicircle and trapezium, theorem of parallel and perpendicular axes, moment of inertia of simple geometrical figures, polar moment of inertia. Numerical Problems

**Simple stresses &strains** : Concept & types of Stresses and strains, Polson's ratio, stresses and strain in simple and compound bars under axial loading, stress strain diagrams, Hooks law, elastic constants & their relationships, temperature stress & strain in simple & compound bars under axial loading, Numerical problems.

#### Unit-II

**Principle stresses**: Two dimensional systems, stress at a point on a plane, principal stresses and principal planes, Mohr's circle of stresses, Numerical

**Shear Force & Bending Moments** : Definitions, SF & BM diagrams for cantilevers, simply supported beams with or without over-hang and calculation of maximum BM & SF and the point of contraflexture under (i) concentrated loads, (ii) uniformly distributed loads over whole span or a part of it, (iii)combination of concentrated loads and uniformly distributed loads, (iv) uniformly varying loads and (v) application of moments, relation between the rate of loading, the shear force and the bending moments, Numerical Problems.

7

#### **Unit-III**

**Torsion of circular Members**: Derivation of equation of torsion, Solid and hollow circular shafts, tapered shaft, stepped shaft & composite circular shafts, Numerical problems.

**Flexural and shear stresses** – Theory of simple bending, Assumptions, derivation of equation of bending, neutral axis, determination of bending stresses, section modulus of rectangular & circular (solid & hollow), I,T, Angle, channel sections, composite beams, shear stresses in beams with derivation, shear stress distribution across various beam sections like rectangular, circular, triangular, I, T, angle sections. Combined bending and torsion, equivalent torque,. Numerical problems.

#### Unit-IV

**Columns & Struts:** Column under axial load, concept of instability and buckling, slenderness ratio, derivation of Euler's formula for crippling load for columns of different ends, concept of equivalent length, eccentric loading, Rankine formulae and other empirical relations, Numerical problems.

**Slope &Deflection** : Relationship between bending moment, slope & deflection, moment area method, method of integration, Macaulay's method, calculations for slope and deflection of (i) cantilevers and (ii) simply supported beams with or without overhang under concentrated load, Uniformly distributed loads or combination of concentrated and uniformly distributed loads, Numerical problems.

#### **Text Books:**

- 1. Strength of Materials R.K. Rajput, Dhanpat Rai & Sons.
- 2. Strength of Materials Sadhu Singh, Khanna Publications.
- 3. Strength of Materials R.K. Bansal, Laxmi Publications.

#### **Reference Books:**

- 1. Strength of Materials Popov, PHI, New Delhi.
- 2. Strength of Materials Robert I. Mott, Pearson, New Delhi
- 3. Strength of Material Shaums Outline Series McGraw Hill
- 4. Strength of Material Rider ELBS

Course	Course Title	Te	achir	ng	Allotr	nent of Ma	rks	Duration		
No.		Schedule				of Exam				
		L	Т	Р	Theory	Sessional	Total	(Hrs.)		
ME-205N	MACHINE	2	0	3	75	25	100	3		
	<b>DRAWING</b>									
Purpose	To understand how different parts are assembled for an assembly.									
		Cou	urse (	Dutcon	nes (CO)					
CO-1	Student gets aware about surface finish of the finished surface and isometric projection.									
CO-2	Student gets aware a	ıbou	it the	free ha	nd drawing	s of the diff	ferent joi	nts.		
CO-3	Student gets aware a	ıbou	t how	differ	ent parts ar	e assembled	l for an a	ussembly.		

# Unit-I

Introduction to BIS Specification SP: 46 – 1988 Code of engineering drawing –Limits, fits and Tolerance (Dimensional and Geometrical tolerance), Surface finish representation, Isometric projections from orthographic views.

#### Unit-II

Dimensioning, Sectioning.

Coupling: protected unprotected flange coupling, flexible coupling,

Crankshaft: overhung, disc of crank, Built up crank.

Cotter: sleeve and cotter, spigot and socket, Gib and cotter.

Knuckle joint, Connecting rod, Riveted Joint. Welded Joint

### **Unit-III**

Assembly drawing with sectioning, bill of materials, Assemblies: Lathe Tail stock, machine vice, pedestal bearing, drill jig and milling jig.

#### **Text Books:**

1. Machine Drawing by N D Bhat and V M Panchal, Charotar Publishing House

2. A Text Book of Machine Drawing: P S Gill , Pub.: S K Kataria& Sons

3. A Text Book of Machine Drawing: Dr.R.KDhawan, Pub.: S.Chand

# **Reference Books :**

1. A Text Book of Machine Drawing :Laxminarayana and Mathur, Pub. : M/s. Jain Brothers, New Delhi.

2. Machine drawing : N Sidheshwar, P Kannaieh V V S Sastry, Pub.: Tata Mc Graw –Hill Publishing Ltd.

3. Machine drawing : R B Gupta Satya Prakashan

Note: Some of the exercises may be done on AUTOCAD Software.

# NOTE:

(1) In the semester examination, the examiner will set two questions from each unit. The students have to attempt three questions taking one from each unit.
(2) The questions from Unit I and Unit II will carry 15 marks each. Question from

(2) The questions from Unit I and Unit II will carry 15 marks each. Question from Unit III will carry 45 marks.

Course	Course Title	Te	eachir	ng	Allotr	nent of Ma	rks	Duration		
No.		Sc	Schedule					of Exam		
		L	L T P		Theory	Sessional	Total	(Hrs.)		
ME-207N	<b>KINEMATIC OF</b>	3	1	0	75	25	100	3		
	<b>MACHINES</b>									
Purpose	To understand const	of Mecha	nisms.							
		Co	Dutcor	nes (CO)						
CO-1	To understand the b	asic	com	ponent	s and layou	t of linkage	es in the	assembly of		
	a system / machine									
CO-2	To understand the	prin	ciples	s in ar	alyzing the	e assembly	with re-	spect to the		
	displacement, veloci	ity, a	and ad	ccelera	tion at any	point in a li	nk of a r	nechanism.		
CO-3	To understand the r	noti	on m	echani	sms with lo	ower pairs a	and the	mechanisms		
	used in automobile.									
<b>CO-4</b>	To understand the r	noti	on res	sulting	from a be	It and chain	drives	systems and		
	study cam mechanis	ms	for sp	ecified	l output mo	tions				

## UNIT-I

#### Introduction to Mechanisms and Kinematics:

Introduction, Machines and Mechanisms, Kinematics, Mechanism Terminology, Kinematic Diagrams, Kinematic Inversion, **Mobility:** Gruebler's Equation, Actuators and Drivers, **Commonly Used Links and Joints:** Eccentric Crank, Pin-in-a-Slot Joint, Screw Joint, **Special Cases of the Mobility Equation:** Coincident Joints, Exceptions to the Gruebler's equation, Idle Degrees of Freedom, **The Four-Bar Mechanism:** Grashof 's Criterion , Double Crank, Crank-Rocker, Double Rocker, Change Point Mechanism, Triple Rocker, **Slider-Crank Mechanism, Special Purpose Mechanisms:** Straight-Line Mechanisms, Parallelogram Mechanisms, Quick-Return Mechanisms, Scotch Yoke Mechanism, **Problems** 

#### **UNIT-II**

**Velocity determination**: Kennedy's Space and body centroids, Relative velocity methods, Instantaneous center method,

Acceleration determination: Four link Mechanism, Acceleration of Intermediate and Offset points, Slider Crank Mechanism, Coriolis Acceleration components, Crank and slotted lever mechanism, Klein's and other constructions.

**Kinematics Synthesis of Mechanisms:** Number Synthesis, Frudenstein's equation, Chebyshev spacing of precisions points, Two and three position synthesis of four bar mechanisms and slider crank mechanisms, Overlay method, Bloch method and transmission angle.

#### UNIT-III

**Mechanisms with Lower Pairs:** Pantograph, straight-line motion mechanisms: accurate straight line motion mechanisms (Peaucellier, Hart and Scott Russell mechanism), approximate straight-line motion mechanisms (Grasshopper, Watt, Tchebicheff mechanism) Intermittent motion mechanisms, Parallel linkages, Engine pressure Indicators (Simplex Crosby, Thomson)

12

**Automobile steering gear mechanisms**: Fundamental equation for correct steering, Davis and Ackerman steering gear, Hooke's joint (universal coupling), Double hooke's joint, **Friction:** Types of friction, Laws of dry friction, Motion along inclined plane Screw threads, Wedge, screw jack, pivots and collars.

# **UNIT-IV**

**Cams and Followers**: Introduction, Classification of Followers, Classification of Cams, Terms used in Radial cams, Motion of the Follower,

Displacement, Velocity and Acceleration Diagrams when (i) the Follower Moves with Uniform Velocity (ii) the Follower Moves with Simple Harmonic Motion. (iii) the follower Moves with Uniform Acceleration and Retardation, Cycloidal Motion, Construction of Cam Profiles, Cams with Specified Contours, Tangent Cam with Reciprocating Roller Follower, Circular Arc Cam with Flat-faced Follower.

**Belt and Chain Drives:**Open and crossed belt drives, velocity ratio, slip, material for belts, crowning of pulleys, lawof belting, types of pulleys, length of belts ratio of tensions, centrifugal tension, power transmitted by belts, initial tension, creep, chain drive, chain length, classification of chains

# Suggested reading:

- 1. Theory of machines: S. S. Rattan, Tata McGraw Hill Publications
- 2. Theory of Machines and Mechanisms.:Uicker, J.J., Pennock G.R and Shigley, J.E., 3rd Edition, Oxford University Press, 2009.
- 3. Machines and mechanisms, Applied kinematic analysis by David h. Myszka, Prentice hall
- 4. Theory of Machines, V. P. Singh, Dhanpat Rai & Co. Pvt. Ltd., Delhi.
- 5. Mechanism synthesis and analysis: A.H. Soni, McGraw Hill Publications.
- 6. Mechanism: J.S. Beggs.
- 7. Mechanics of Machines: P.Black, Pergamon Press.
- 8. Theory of Machines: P.L.Ballaney, Khanna Publisher
- 9. "Theory of Machines: Thomas Bevan,", 3rd Edition, CBS Publishers and Distributors, 2005.

Course	Course Title	Τe	eachir	ng	Allotr	nent of Ma	rks	Duration		
No.		Schedule					of Exam			
		L T P			Theory	Sessional	Total	(Hrs.)		
ME-209N	<b>MATERIAL</b>	4 0 0			75	25	100	3		
	<b>SCIENCE</b>									
Purpose	To understand internal structure and properties relationship of different types									
of materials.										
Course Outcomes (CO)										
CO-1	To understand the C	Crys	stal st	ructure	es and defo	ormation m	echanisn	n in various		
	materials.									
CO-2	To study various t	ype	es of	phase	diagrams,	TTT curv	ve and 1	Iron carbon		
	diagram. To learn al	bou	t diffe	erent he	eat treatmer	nt processes				
CO-3	To learn about th	e	structi	ure pr	operties a	nd applica	tions of	Ceramics,		
	composites, polymers and some of the advanced materials.									
<b>CO-4</b>	To study various typ	es o	of cha	racteri	zation techi	niques and t	to learn a	about failure		
	mechanisms like Cre	eep	and F	atigue.						

#### UNIT-I

**Crystallography:** Review of Crystal Structure, Space Lattice, Crystal Planes and Directions, Co-ordination Number, Number of Atoms per Unit Cell, Atomic Packing Factor; Numerical Problems Related to Crystallography.

**Imperfection in Metal Crystals:** Crystal Imperfections and their Classifications, Point Defects, Line Defects, Edge & Screw Dislocations, Surface Defects, Volume Defects, Effects of Imperfections on Metal Properties.

**Deformation of Metal:** Elastic and Plastic Deformation, Mechanism of Plastic Deformation, Twinning, Conventional and True Stress Strain Curves for Polycrystalline Materials, Yield Point Phenomena, Strain Ageing, Work Hardening, Bauschinger Effect, Recovery, Re-Crystallization and Grain Growth..

#### UNIT-II

**Phase Diagrams:** Alloy Systems, Solid solutions, Hume Rothery's Rules, Phase Diagrams, Gibbs Phase Rule, TTT curve, The Lever Rule, binary phase diagrams, intermediate phases, intermetallic compounds, Applications of Phase Diagrams, Phase Transformation, Micro constituents of Fe-C system, Allotropic Forms of Iron, iron-iron carbide phase diagram, Modified Iron Carbon Phase Diagrams,

**Heat treatment:** Heat treatment of steels, Annealing, Normalising, Hardening, Tempering, Case Hardening, Surface Hardening, Ageing, Austempering and Martempering, Mass Effect, Equipment for Heat Treatment, Major Defects in Metals or Alloys due to faulty Heat treatment, recovery, recrystallization and grain growth. Microstructure, properties and applications of ferrous and non-ferrous alloys.

# **UNIT-III**

# **Ceramics, Polymers and Composites:**

# **Ceramics:**

Structure, properties, processing and applications of traditional and advanced ceramics.

# **Polymers:**

Classification, polymerization, structure and properties, additives for polymer products, processing and applications.

Composites: Properties and applications of various composites.

#### **Advanced Materials:**

Smart materials exhibiting ferroelectric, piezoelectric, opto-electric, semiconducting behaviour, Aerogels, photoconductivity and superconductivity, nanomaterials, biomaterials, super alloys, shape memory alloys, Liquid crystals, Carbon Nanotubes, Graphene and Fullerenes.

#### UNIT-IV

#### MaterialsCharacterization Techniques:

Characterization techniques such as, scanning electronmicroscopy, transmission electron microscopy, atomic force microscopy, scanningtunnelling microscopy, atomic absorption spectroscopy, differential scanning calorimetry.

#### **Failure of Materials:**

**Fatigue**: Fatigue fracture, fatigue failure, Mechanism of Fatigue Failure, Design for Fatigue, Fatigue Life calculations, Fatigue Tests, Rotating Beam Fatigue Test, Wohler Fatigue Test, Theories of Fatigue, Corrosion Fatigue,

**Creep**: Creep Curve, Creep Curve equations, Types of Creep, Factors affecting Creep, Mechanism of Creep, Creep Resistant Material, Creep Fracture, Creep Test, Stress Rupture test,

#### **Text Books:**

- 1. Material Science by S.L. Kakani, New Age Publishers.
- 2. The Science and Engineering of Materials, Donald R. Askeland, Chapman & Hall.
- 3. Fundamentals of Material Science and Engineeringby W. D. Callister, Wiley.
- 4. Fundamental of Light Microscopy and Electronic Imaging by Douglas B. Murphy, Kindle Edition 2001
- 5. Materials Science and Engineering, V. Raghvan
- 6. Phase Transformation in Metals and Alloys, D. A. Porter & K. E. Easterling
- 7. Material Science by Narula, TMH
- 8. Physical Methods for Metal Characterization, PejFlewitt, Institute of Physics Pub.
- 9. Robert Cahn Concise Encyclopedia of Materials Characterization, Second Edition: 2nd Edition (Advances inMaterials Science and Engineering) Elsevier Publication 2005.

Course No.	Course Title	Te Sc	Teaching Schedule		Allotr	Duration of Exam				
		L	L T P		Sessional	Practical	Total	(Hrs.)		
ME-211N	KINEMATIC OF	0	0	2	40	60	100	3		
	MACHINES LAB									
Purpose	To make students understand various kinds of mechanisms working arou									
_	industries and routin	and routine life.								
		Cou	urse (	Dutcor	nes (CO)					
CO-1	To learn about v	ario	us typ	bes of b	basic mecha	nisms & th	eir appli	cations.		
CO-2	To learn about c	omp	olex n	nechan	isms practic	cally used in	n machin	les.		
CO-3	To learn about st	teeri	ing m	echani	sm used in a	automobile	s			
CO-4	To learn about the	ne w	orkin	g of va	arious joints	s like Hook	e's joint.			

# List of experiments

- 1. To Study of the inversions of the single slider crank mechanism.
- 2. To verify the law of moment using Bell- crank lever.
- 3. To determine velocity & acceleration of slider in slider-crank mechanism and plot the following:
  - a.  $\theta$  v/s x (displacement of slider)
  - b.  $\theta$  v/s velocity and
  - c.  $\theta$  v/s acceleration.

Compare the values of velocities & acceleration with those obtained theoretically.(Assume  $\omega$ =I rad/sec.).

- 4. To determine experimentally the ratio of the cutting time to idle time (cutting stroke to idle stroke) of the crank and slotted lever (QRM)/ Whitworth and compare the result to theoretical values plot the following
  - a.  $\theta$  v/s X (displacement of slider).
  - b.  $\theta$  v/s velocity.
  - c.  $\theta$  v/s Acceleration and to compare the values of velocities
  - (Take angles  $\theta = 45^{\circ}$ , 90°, 135°, 225°, 270° & 335°,  $\omega = 1 \text{ rad/s}$ )
- 5. To determine the displacement, velocities, & accelerations of the driven shaft of a Hooke's joint for a constant speed of the driver shaft.
- 6. To study various types of steering mechanisms.
- 7. To determine the value of coefficient of friction between the screw and nut of the jack, while:
  - a. Raising the load
  - b. Lowering the load
- 8. To draw experimentally a curve of the follower-displacement v/s cam-angle. Differentiate the above curve to get velocity and acceleration plot and compare the values with those obtained analytically
- 9. To determine the coefficient of friction between belt and pulley and plot a graph between  $\log_{10} T_1/T_2 v/s$ ,  $\theta$ .
- 10. To determine the value of coefficient of friction for a given pair of surfaces using friction apparatus.
- 11. To find out experimentally the coriolis component of acceleration and compare with theoretical values.

Course	Course Title	Teaching		Allotr	nent of Ma	rks	Duration			
No.		Schedule					of Exam			
		L T P			Sessional	Practical	Total	(Hrs.)		
ME-213N	MATERIAL	0 0 2			40	60	100	3		
	SCIENCE LAB									
Purpose	To make the students aware of material structure and properties of									
	using different experiments.									
Course Outcomes (CO)										
CO-1	Ability to design an	d co	onduc	t expe	riments, acc	juire data, a	analyze a	and interpret		
	data									
CO-2	Ability to determin	ne t	he gi	ain si	ze and stra	ain hardeni	ing phei	nomenon in		
	different metals by r	near	ns of	experii	ments.					
CO-3	Ability to learn at	oout	stre	ss con	centration	factor and	micros	tructures of		
	different materials.									
CO-4	To learn about heat treatment processes through experiments.									
CO-5	Ability to perform F	atig	ue an	d creep	o test on dif	ferent mate	rials.			

# List of Experiments:

- 1. To study crystal structures with the help of models.
- 2. To study crystal imperfections with the help of models.
- 3. Determination of grain size for a given specimen
- 4. To determine the stress concentration factor at a geometrical discontinuity
- 5. To observe and learn about the strain hardening effect inmetals.
- 6. Comparative study of microstructures of different specimens of different materials (Mild steel, Gray C.I., Brass, Copper, Aluminium etc.)
- 7. To prepare a small specimen and mount it using hot mounting press.
- 8. To harden and temper a given steel specimen.
- 9. To anneal a given hardened steel specimen.
- 10. To analyse microstructure of quench hardened steel specimen.
- 11. To perform Fatigue test on fatigue testing machine.
- 12. To perform Creep test on creep testing machine.

					1			1		
Course	Course Title	Te	eachir	ng	Allotn	nent of Ma	rks	Duration		
No.		Sc	Schedule					of Exam		
		L T P			Sessional	Practical	Total	(Hrs.)		
ME-215N	<b>MECHANICS</b>	0	0	2	40	60	100	3		
	OF SOLIDS LAB									
Purpose	To make the students aware of different properties of material using dif									
	experiments.									
	Course Outcomes (CO)									
CO-1	Ability to design and	d co	onduct	t expei	riments, acq	uire data, a	analyze a	and interpret		
	data									
CO-2	Ability to determine	e th	e beh	avior (	of ferrous r	netals subj	ected to	normal and		
	shear stresses by me	ans	of exp	perime	ents					
CO-3	Ability to determine	the	beha	vior of	structural e	elements, su	ich as ba	rs subjected		
	to tension, compress	ion,	shear	r, bend	ling, and tor	sion by me	ans of ex	periments.		
CO-4	Physical insight into	the	e beha	avior n	naterials and	d structural	element	ts, including		
	distribution of stress	es a	nd str	ains, d	leformation	s and failur	e modes.			
CO-5	Write individual and	l gro	oup re	ports:	present obje	ectives, des	cribe tes	t procedures		
	and results, synthesized	ze a	nd dis	scuss t	he test resul	ts.				

# List of Experiments:

- 1. To study the Brinell hardness testing machine & perform the Brinell hardness test.
- 2. To study the Rockwell hardness testing machine & perform the Rockwell hardness test.
- 3. To study the Vickers hardness testing machine & perform the Vickers hardness test.
- 4. To study the Erichson sheet metal testing machine & perform the Erichson sheet metal test.
- 5. To study the Impact testing machine and perform the Impact tests (Izod & Charpy).
- 6. To study the Universal testing machine and perform the tensile, compression & bending tests.
- 7. To perform the shear test on UTM.
- 8. To study the torsion testing machine and perform the torsion test.
- 9. To draw shear Force, Bending Moment Diagrams for a simply Supported Beam under Point and Distributed Loads.
- 10. To prepare the composite specimen using hot compression molding machine and test on UTM.
- 12. To view and measure the principal stress components and directions of principal stresses by the photo elastic method using 12" Diffused Light Research Polariscope.

Course No.	Course Title	Te	achin	g	Allotr	nent of Ma	rks	Duration		
		Sc	Schedule			of Exam				
		L	L T P		Theory	Sessional	Total	(Hrs.)		
MPC-	<b>ENVIRONMENTAL</b>	3	0	0	75	25	100	3		
201N	<b>STUDIES</b>	TUDIES								
	To learn the multidiscip	lina	ry nat	ure, sc	ope and im	portance of	Environ	mental		
Purpose	Studies									
	С	ours	se Ou	tcome	s (CO)					
CO-1	Basic concepts of Variou	ıs ki	nds of	Micros	scopy and Co	entrifugation	Techniq	ues		
CO-2	To learn the theoretical and practical aspects of Electrophoresis and Chromatography Techniques									
CO-3	To learn the concepts of different kinds of Spectroscopy and Colourimetry									
CO-4	To understand the concept of radioisotope techniques and their applications in research									

#### UNIT 1

The multidisciplinary nature of environmental studies. Definition, Scope and Importance. Need for public awareness. Natural Resources: Renewable and Non-Renewable Resources: Natural resources and associated problems.

- (a) Forest Resources: Use and over-exploitation, deforestation, case studies. Timber eztraction, mining, dams and their effects on forests and tribal people.
- (b) Water Resources- Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- (c) Mineral Resources- Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
- (d) Food Resources- World Food Problems, changes caused by agriculture and overgazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- (e) Energy Resources- Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.
- (f) Land Resources- Land as a resource, land, degradation, man induced landslides, soil erosion and desertification.

Role of an individual in conservation of natural resources.Equitable use of resources for sustainable lifestyle.

#### **UNIT II**

Ecosystem-Concept of an ecosystem.Structure and function of an ecosystem.Producers, consumers and decomposers.Energy flow in the ecosystem.Ecological Succession.Food Chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem-

- a. Forest Ecosystem
- b. Grassland Ecosystem
- c. Desert Ecosystem
- d. Aquatic Ecosystems(ponds, streams, lakes, rivers, oceans, estuaries

Field Work. Visit to local area to document Environment а assetsriver/forest/grassland/hill/mountain.Visit to а local polluted site-Urban /Rural Industrial/Agricultural. Study of common plants, insects and birds. Study of simple ecosystems-pond, river, hill, slopes etc. (Field work equal to 5 lecture hours).

#### UNIT III

Biodiversity and its conservation. Introduction, Definition: genetic, species and ecosystem diversity. Biogeographical classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversity of global, National and local levels. India as a mega-diversity nation Hot spots of Biodiversity. Threats to biodiversity: Habitat loss, poaching of wild life, man-wildlife conflicts. Endangered and endemic species of India.Conservation of Biodiversity- In situ and Ex-Situ conservation of biodiversity.

Environmental Pollution Definition. Cause, effects and control measures of- (a) Air Pollution (b) Water Pollution (c) Soil Pollution (d) Marine Pollution (e) Noise Pollution (f) Thermal Pollution (g) Nuclear Hazards

Solid waste management- cause, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution. Pollution case studies. Disaster management: floods, earthquake, cyclone and landslides

#### **UNIT IV**

Social Issues and the Environment.From unsustainable to sustainable development. Urban problems related to energy. Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people: Its problems and concerns. Case Studies.Environmental ethics-issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies.Wasteland ReclamationConsumerism and waste products.Environment Protection Act.Air (Prevention and Control of Pollution) Act.Water (Prevention and Control of Pollution) Act.Water (Prevention and Control of Pollution) Act.Wildlife Protection Act.Forest Conservation Act. Issues involved in enforcement of environmental legislation. Public Awareness. Human population and the Environment.Population growth, variation among nations. Population explosion-Family Welfare Programme. Environment and human health.Human rights.Value Education.HIV/AIDS, Women and Child Welfare.Role of Information Technology in Environment and Human Health.Case Studies.

#### **Text Books**

- 1. Environmental Studies- Deswal and Deswal. Dhanpat Rai & Co.
- 2. Environmental Science & Engineering Anandan, P. and Kumaravelan, R. 2009. Scitech Publications (India) Pvt. Ltd., India
- 3. Environmental Studies. Daniels Ranjit R. J. and Krishnaswamy. 2013. Wiley India.
- 4. Environmental Science-Botkin and Keller. 2012. Wiley, India

Course No.	Course Title	Te Sc	Teaching Schedule		Allotr	Duration of Exam				
		L	L T P		Theory	Sessional	Total	(Hrs.)		
HS-201N	<b>FUNDAMENTALS</b>	3	0	0	75	25	100	3		
	<b>OF MANAGEMENT</b>									
Purpose	To understand the concept	and	l techn	iques c	of controlling	g and new tre	ends in m	anagement		
	Course Outcomes (CO)									
CO-1	An overview about mana	igen	nent as	a disci	pline and its	evolution				
CO-2	Understand the concept a	and i	import	ance of	planning ar	d organizing	g in an or	ganization		
CO-3	Enabling the students to know about the importance of hiring and guiding the workforce by understanding the concept of leadership and communication in detail									
CO-4	To understand the conce	pt ar	nd tech	nniques	of controllin	ng and new t	rends in r	nanagement		

#### UNIT-1

**1. Introduction to Management:** Meaning, Definition, nature, importance & Functions, Management as Art, Science & Profession- Management as social System, Concepts of management-Administration

**2. Evolution of Management Thought**: Development of Management Thought- Scientific management, Administrative Theory of Management, Bureaucratic Organization, Behavioral approach (Neo Classical Theory): Human Relations Movement; Behavioral Science approach; Modern approach to management – Systems approach and contingency approach.

#### **UNIT-II**

**3. Planning**: nature, purpose and functions, types of plans, planning process, Strategies and Policies: Concept of Corporate Strategy, formulation of strategy, Types of strategies, Management by objectives (MBO), SWOT analysis, Types of policies, principles of formulation of policies

**4. Organizing**: nature, importance, process, organization structure: Line and Staff organization, Delegation of Authority and responsibility, Centralization and Decentralization, Decision Making Process, Decision Making Models, Departmentalization: Concept and Types (Project and Matrix), formal & informal organizations

#### UNIT-III

**5. Staffing**: concept, process, features; manpower planning; Job Analysis: concept and process; Recruitment and selection: concept, process, sources of recruitment; performance appraisal, training and development

**6. Directing**: Communication- nature, process, formal and informal, barriers to Effective Communication, Theories of motivation-Maslow, Herzberg, McGregor ; Leadership – concept and theories, Managerial Grid, Situational Leadership. Transactional and Transformational Leadership.

#### **UNIT-IV**

**7. Controlling**: concept, process, types, barriers to controlling, controlling Techniques: budgetary control, Return on investment, Management information system-MIS, TQM-Total Quality Management, Network Analysis- PERT and CPM.

#### 8. Recent Trends in Management: -

Social Responsibility of Management–Management of Crisis, Total Quality Management, Stress Management, Concept of Corporate Social Responsibility (CSR) and business ethics.

Functional aspects of business: Conceptual framework of functional areas of management-Finance; Marketing and Human Resources

# **Text books**

- 1. Management Concepts Robbins, S.P; Pearson Education India
- 2. Principles of Management Koontz &O'Donnel; (McGraw Hill)

# **Recommended books**

- 1. Business Organization and Management Basu; Tata McGraw Hill
- 2. Management and OB-- Mullins; Pearson Education
- 3. Essentials of Management Koontz, Tata McGraw-Hill
- 4. Management Theory and Practice Gupta, C.B; Sultan Chand and Sons, new Delhi
- 5. Prasad, Lallan and S.S. Gulshan. *Management Principles and Practices*. S. Chand& Co. Ltd., New Delhi.
- 6. Chhabra, T.N. Principles and Practice of Management. DhanpatRai& Co., Delhi.
- 7. Organizational behaviour Robins Stephen P; PHI.

Course No.	Course Title	Te	achin	g	Allotr	nent of Ma	rks	Duration		
		Sc	hedul	le				of Exam		
		L	Τ	P	Theory	Sessional	Total	(Hrs.)		
ME-202N	Production Technology-I	4	0	0	75	25	100	3		
Purpose	To make student aware ab machines used for metal cu	out uttir	variou 1g.	is meta	al cutting to	ols, mechar	nism invo	olved and		
	Course Outcomes (CO)									
CO-1	Learn about tool geometries, tool life, geometries	etry try,	and surfac	nomen e finis	clature, ch h etc.	ip classific	ation, m	etal cutting		
CO-2	Learn about cutting fluid	s an	d tool	life, e	conomics o	f metal mac	chining.			
CO-3	Learn about milling and drilling machines.									
CO-4	Learn about specification its measurements.	Learn about specifications of various machine tools, metrology, surface finish and its measurements.								

# UNIT-I

# **Geometry of Cutting Tools:**

Introduction, Geometry of single point turning tools: Cutting edges, Rake and Clearance angles, Systems of description of tool geometry, Designation of tool geometry in Machine reference system, ORS system and NRS system

Geometry of Multi point cutting tools: Geometry of Milling cutters, Geometry of Drills

# **Mechanics of Metal cutting:**

Cutting Tool Materials, Chip formation, Types of Chips, Chip control and chip breakers, orthogonal and oblique metal cutting, Chip thickness ratio, Velocity relationship in orthogonal cutting, Merchant's Analysis, Stress and Strain on the chip, Forces on single point cutting tool, Torque, heat produced, power and MRR equations, Use of Merchant's circle diagram in force analysis in orthogonal cutting for single point cutting tool.

Popular theories on mechanics of metal cutting: Earnst Merchant Theory, Merchant theory, Stabler Theory, Lee and Shaffer's Theory. Factors affecting temperature in metal cutting,

#### UNIT-II

# **Cutting Fluids and Tool life:**

Cutting fluids, Purpose, Properties, Types of lubricants, Types of cutting fluids, Tool Failure, Mechanisms of Tool wear, Tool Life, Factors affecting tool life. Taylor's Tool life equation **Economics of metal machining:** 

Cost Considerations in Manufacturing, Elements of Machining cost, Minimum cost per piece, Maximum Production rate, Optimum cutting speed and optimum tool life for minimum cost of production and maximum production rate, Machinability, Machinability Index, Improving Machinability, Measurement of cutting forces, Tool force Dynamometers, Numerical on Mechanics of Metal cutting and economics.

# UNIT-III

# Milling Process:

Milling Machine Operations performed on Milling machine, Parts of Milling Machine, Types of Milling machines, fundamentals of Milling process, Milling Cutters, Elements of Plain Milling cutter, Cutter Holing devices, Cutting speed, Feed and depth of cut, Force system in Milling, Dividing head or Indexing Head, Methods of Indexing

# **Drilling Machine:**

Types of Drills, Drilling machine Types, Drilling machine operations, Size of Drilling machine, Main parts of drilling machine, Force system in Drilling, Cutting speed, Feed and Depth of cut in drilling, MRR in drilling, Numerical Problems on Drilling.

23

#### UNIT-IV

#### **Specification of Machine Tools:**

Introduction, purpose of machine tool specifications, Methods of specification of conventional machine tools: specification of lathes, specification of drilling and boring machines, specification of shaper, planer and slotter machines, specification of milling machine, specification of gear teeth generating machines, specification of grinding machines. Metrology

Measurements, Linear Measurement, Callipers, Vernier Calliper, Micrometer, Angular Measurement, Comparators-mechanical, electrical and optical, sine bar, auto-collimator, Surface finish and its measurement, Surface Roughness Measurement methods, Factors affecting surface finish in machining, micro and macro deviation, specifying surface finish.

#### Suggested reading:

- 1. Machining and Machine Tools by A.B. Chattopadhyay, Wiley India.
- 2. Manufacturing Processes by J.P. Kaushish, PHI
- 3. Metrology & Measurement By Bewoor, McGraw Hill.
- 4. A Textbook of Production Technology by P.C.Sharma, S.Chand pub.
- 5. Workshop Technology: B.S.Raghuwanshi, DhanpatRai Publications.
- 6. Production Technology: R.K.Jain, Khanna Publishers.
- 7. Machine Tools: R.Kesavan & B.Vijava Ramnath, Laxmi Publications.
- 8. Machining and Machine Tools: A.B.Chattopadhyay, WILEY INDIA.

Course No.	Course Title	Te Sc	eachir chedu	ng le	Allotr	nent of Ma	arks	Duration of Exam			
		L	Т	Р	Theory	Sessional	Total	(Hrs.)			
ME-204N	<b>STEAM</b>	3	1	0	75	25	100	3			
	<b>GENERATION &amp;</b>										
	POWER										
Purpose	To make student learn abo	out b	asics	of The	rmal engine	eering, stear	m genera	tion and			
	applications.										
	Co	ourse	e Out	comes	(CO)						
CO-1	Learn about boilers, type	es of	boile	rs and	accessories	and mount	ing used	on boilers.			
CO-2	Learn about simple and	mod	ified I	Rankin	e cycle and	working of	f steam e	ngine.			
CO-3	Learn about design and	Learn about design and analysis of steam flow through steam nozzles. To learn									
	about the working of different types of condensers.										
CO-4	Learn about working of	Learn about working of Steam turbines and about design and analysis of the steam									
	turbine.										

# UNIT I

Introduction; classification of boilers; comparison of fire tube and water tube boiler; their advantages; description of boiler; Lancashire; locomotive; Babcock; Wilcox etc.; boiler mountings; stop valve; safety valve; blow off valve; feed check etc.; water level indicator; fusible plug; pressure gauge; boiler accessories; feed pump; feed water heater; preheater; superheater; economizer; natural draught chimney design; artificial draught; stream jet draught; mechanical draught; calculation of boiler efficiency and equivalent evaporation(no numerical problem)

#### UNIT II

Carnot cycle; simple and modified Rankine cycle; effect of operating parameters on rankine cycle performance; effect of superheating; effect of maximum pressure; effect of exhaust pressure; reheating and regenerative Rankine cycle; types of feed water heater; reheat factor; binary vapour cycle. Simple steam engine, compound engine; function of various components.

#### UNIT III

Function of steam nozzle; shape of nozzle for subsonics and supersonics flow of stream; variation of velocity; area of specific volume; steady state energy equation; continuity equation; nozzle efficiency; critical pressure ratio for maximum discharge; physical explanation of critical pressure; super saturated flow of steam; design of steam nozzle. Advantage of steam condensation; component of steam condensing plant; types of condensers; air leakage in condensers; Dalton's law of partial pressure; vacuum efficiency; calculation of cooling water requirement; air expansion pump.

## UNIT IV

Introduction; classification of steam turbine; impulse turbine; working principal; compounding of impulse turbine; velocity diagram; calculation of power output and efficiency; maximum efficiency of a single stage impulse turbine; design of impulse turbine blade section; impulse reaction turbine; working principle; degree of reaction; parsons

turbine; velocity diagram; calculation of power output; efficiency of blade height; condition of maximum efficiency; internal losses in steam turbine; governing of steam turbine.

# **Text Books :**

- 1. Thermal Engineering P L Ballaney, Khanna Publishers
- 2. Thermodynamics and Heat Engines vol II R Yadav, Central Publishing House **Reference Books :**
- 1. Applied Thermodynamics for Engineering Technologists T D Eastop and A. McConkey, Pearson Education
- 2. Heat Engineering V P Vasandani and D S Kumar, Metropolitan Book Co Pvt Ltd.

Course Title	Teaching Allotment of Marks				Duration			
Course Thie	re		lg	Allou	nent of Ma	ITKS	Duration	
	Sc	hedul	e				of Exam	
	L	Т	Р	Theory	Sessional	Total	(Hrs.)	
MECHANICS OF	3	1	0	75	25	100	3	
SOLIDS-II								
The objective of this cours	se is	to sh	ow the	developme	ent of strair	n energy	and stresses	
in springs, pressure vessel,	, rin	gs, lir	nks, cu	rved bars u	nder differe	ent loads	. The course	
will help the students to bu	iild	the fu	ndame	ental concep	ots in order	to solve	engineering	
problems								
Course Outcomes (CO)								
Identify the basics conce	Identify the basics concepts of strain energy and various theories of failures and							
solve the problems								
Differentiate different typ	pes o	of stre	esses in	duced in th	in pressure	vessel a	nd solve the	
problems. Use of Lame's	equ	ation	to calc	culate the st	resses indu	ced in th	ick pressure	
vessel.								
Able to compute stresse	s in	ring,	disk	and cylinde	er due to r	otation.	Classify the	
different types of spring a	and	analyz	ze the	stresses pro	duced due	to loadin	g	
Determine the stresses in crane hook, rings, chain link for different cross section								
and also the deflection of curved bars and rings. Analyze the stresses due to								
unsymmetrical bending and determine the position of shear centre of different								
section.				_				
	Course Title      MECHANICS OF     SOLIDS-II     The objective of this course in springs, pressure vessel, will help the students to buproblems     Example 1     Identify the basics concerned solve the problems     Differentiate different type problems. Use of Lame's vessel.     Able to compute stresses different types of spring a Determine the stresses in and also the deflection unsymmetrical bending section.	Course TitleTeScMECHANICS OFSOLIDS-IIThe objective of this course is in springs, pressure vessel, rin will help the students to build problemsThe objective of this course is in springs, pressure vessel, rin will help the students to build problemsIdentify the basics concepts solve the problemsDifferentiate different types of problems. Use of Lame's equ vessel.Able to compute stresses in different types of spring and also unsymmetrical bending and section.	Course TitleTeaching SchedulImage: Course TitleSchedulMECHANICS OF SOLIDS-II31MECHANICS OF solids, pressure vessel, ring, differentiate different types of streed problems. Use of Lame's equation vessel.VesselAble to compute stresses in ring, different types of spring and analyze Determine the stresses in crane h and also the deflection of curve unsymmetrical bending and determine section.	Course TitleTeaching ScheduleLTPMECHANICS OF SOLIDS-II310SOLIDS-II310The objective of this course is to show the in springs, pressure vessel, rings, links, cur will help the students to build the fundame problems1Course OutcomesIdentify the basics concepts of strain er solve the problemsDifferentiate different types of strain er solve the problems5Differentiate different types of strain er solve the problems5Able to compute stresses in ring, disk different types of spring and analyze the st unsymmetrical bending and determine section.5	Course Title $TeachingAllotrScheduleITPTheoryMECHANICS OFSOLIDS-II31075SOLIDS-II31075The objective of this course is to show the development in springs, pressure vessel, rings, links, curved bars unwill help the students to build the fundamental concept problemsIntervent of the fundamental concept problemsCourse Outcomes (CO)Identify the basics concepts of strain energy and vessel.Differentiate different types of strain energy and vessel.Able to compute stresses in ring, disk and cylinded different types of spring and analyze the stresses proDetermine the stresses in crane hook, rings, chain and also the deflection of curved bars and rings unsymmetrical bending and determine the prosition section.$	Course TitleTeachingAllotment of MaScheduleITPTheorySessionalMECHANICS OF SOLIDS-II3107525SOLIDS-II3107525The objective of this course is to show the development of strain in springs, pressure vessel, rings, links, curved bars under difference will help the students to build the fundamental concepts in order problemsCourse Outcomes (CO)Identify the basics conceptsof strain energy and various the solve the problemsDifferent types of stresses induced in thin pressure problems. Use of Lame's equation to calculate the stresses induced due to easel.Able to compute stresses in ring, disk and cylinder due to r different types of spring and analyze the stresses produced due to and also the deflection of curved bars and rings. Analyze unsymmetrical bending and determine the position of shear section.	Course TitleTeaching ScheduleAllotment of MarksLTPTheorySessionalTotalMECHANICS OF SOLIDS-II3107525100The objective of this course is to show the development of strain energy in springs, pressure vessel, rings, links, curved bars under different loads will help the students to build the fundamental concepts in order to solve problemsorder to solve solve the problemsCourse Outcomes (CO)Identify the basics concepts of strain energy and various theories of solve the problemsstrain energy and various theories of solve the stresses induced in thin pressure vessel a problems. Use of Lame's equation to calculate the stresses induced in thi vessel.analyze the stresses produced due to rotation. I different types of spring and analyze the stresses produced due to loadin Determine the stresses in crane hook, rings, chain link for different c and also the deflection of curved bars and rings. Analyze the stre unsymmetrical bending and determine the position of shear centre section.	

#### Unit-I

**Strain Energy & Impact Loading**: Definitions, expressions for strain energy stored in a bodywhen load is applied (i) gradually, (ii) suddenly and (iii) with impact, strain energy of beamsin bending, beam deflections, strain energy of shafts in twisting, energy methods in determining spring deflection, Castigliano's theorem, Numerical.

**Theories of Elastic Failure:** Various theories of elastic failures with derivations and graphicalrepresentations, applications to problems of 2- dimensional stress system with (i) Combined direct loading and bending, and (ii) combined torsional and direct loading, Numericals.

#### Unit-II

**Thin Walled Vessels:** Hoop & Longitudinal stresses & strains in cylindrical &spherical vessels & their derivations under internal pressure, wire would cylinders, Numericals.

**Thick Cylinders & Spheres**: Derivation of Lame's equations, radial & hoop stresses andstrains in thick, and compound cylinders and spherical shells subjected to internal fluid pressure only, hub shrunk on solid shaft, Numericals.

#### Unit-III

**Rotating Rims & Discs:** Stresses in uniform rotating rings & discs, rotating discs of uniform strength, stresses in (I) rotating rims, neglecting the effect of spokes, (ii) rotating cylinders, hollow cylinders & solids cylinders. Numericals.

**Springs:** Stresses in closed coiled helical springs, Stresses in open coiled helical spring subjected to axial loads and twisting couples, leaf springs, flat spiral springs, concentric springs, Numericals.

#### Unit-IV

**Bending of Curved Bars** : Stresses in bars of initial large radius of curvature, bars of initialsmall radius of curvature, stresses in crane hooks, rings of circular & trapezoidal sections, deflection of curved bars & rings, deflection of rings by Castigliano's theorem, stresses in simple chain link, deflection of simple chain links, Problems.

**Unsymmetrical Bending:** Introduction to unsymmetrical bending, stresses due to unsymmetrical bending, deflection of beam due to unsymmetrical bending, shear center for angle, channel, and I-sections, Numericals.

#### **Text Books:**

1. Strength of Materials – R.K. Rajput, Dhanpat Rai & Sons.

2. Strength of Materials – Sadhu Singh, Khanna Publications.

3. Strength of Materials – R.K. Bansal, Laxmi Publications.

### **Reference Books:**

1. Strength of Materials – Popov, PHI, New Delhi.

2.Strength of Materials - Robert 1. Mott, Pearson, New Delhi

3. Strength of Material – Shaums Outline Series – McGraw Hill

4. Strength of Material – Rider – ELBS

Course No.	Course Title	Te	Teaching		Allotr	nent of Ma	rks	Duration		
		Sc	Schedule					of Exam		
		L	L T P		Theory	Sessional	Total	(Hrs.)		
ME-208N	<b>FLUID MECHANICS</b>	4	1	0	75	25	100	3		
Purpose	To familiarize the students	s wit	h the	basic o	concepts of	Fluid Mech	nanics.			
Course Outcomes (CO)										
CO-1	Understand the basic con	cept	ts of f	luid an	d learn abo	ut fluid stat	ics.			
CO-2	Understand the basic co	nce	pts of	fluid	kinematics	and analy	se the la	ws of fluid		
	dynamics and its applicat	tions	5.							
CO-3	Determine the major and minor losses through pipes and learn to draw the hydraulic									
	gradient and total energy lines.									
CO-4	Understand the concept of	Understand the concept of boundary layer and flow over bodies.								

#### Unit I

**Fluid Properties**: Concept of fluid and flow, ideal and real fluids, continuum concept, Properties of fluid: mass density, weight density, specific volume, specific gravity, viscosity, causes of viscosity, surface tension, capillarity, vapour pressure, compressibility and bulk modulus, Newtonian and non-Newtonian fluids.

**Fluid Statics**: Pressure, Pascal's law, hydrostatic law, pressure measurement, manometers, hydrostatic forces on submerged plane and curved surfaces, buoyancy, stability of floating and submerged bodies, liquids in relative equilibrium. Problems.

# Unit II

**Fluid Kinematics:** Eulerian and Lagrangian description of fluid flow; types of fluid flows, stream, streak and path lines; acceleration of a fluid particle, flow rate and continuity equation, differential equation of continuity in cartesian and polar coordinates, rotation and vorticity, circulation, stream and potential functions, flow net. Problems.

**Fluid Dynamics:** Concept of system and control volume, Euler's equation, Bernoulli's equation and its practical applications, venturimeter, orificemeter, orifices, mouthpieces, Impulse momentum equation, kinetic energy and momentum correction factors. Problems.

#### Unit III

**Viscous Flow:** Flow regimes and Reynold's number, Navier-Stokes equation, relationship between shear stress and pressure gradient, flow of viscous fluids in circular pipe and between stationary and moving parallel plates, hydrodynamic lubrication, movement of piston in a dashpot, power absorbed in bearings. Problems.

**Turbulent Flow Through Pipes:** Transition from laminar to turbulent flow, Reynold's equation of turbulence, Shear stress in turbulent flow, Prandtl mixing length hypothesis, Major and minor losses in pipes, hydraulic gradient and total energy lines, series and parallel connection of pipes, branched pipes; equivalent pipe, power transmission through pipes, hydraulically smooth and rough pipes, velocity distribution in pipes, friction coefficients for smooth and rough pipes. Problems.

# Unit IV

**Boundary Layer Flow:** Boundary layer concept, displacement, momentum and energy thickness, Blasius solution, von-Karman momentum integral equation, laminar and turbulent boundary layer flows, separation of boundary layer and its control.

**Flow over Bodies:** Drag and lift, friction and pressure drag, lift and drag coefficients, stream lined and bluff bodies, drag on a flat plate, drag on a cylinder and an airfoil, circulation and lift on a circular cylinder and an airfoil. Problems.

# **Reference and Text Books:**

- 1. Introduction to Fluid Mechanics R.W. Fox, Alan T. McDonald, P.J. Pritchard, Wiley Publications.
- 2. Fluid Mechanics Frank M. White, McGraw Hill
- 3. Fluid Mechanics and Fluid Power Engineering D.S. Kumar, S.K. Kataria and Sons
- 4. Fluid Mechanics Streeter V L and Wylie E B, Mc Graw Hill
- 5. Introduction to Fluid Mechanics and Fluid Machines S.K. Som and G. Biswas, Tata McGraw Hill.
- 6. Mechanics of Fluids I H Shames, Mc Graw Hill
- 7. Fluid Mechanics: Fundamnetals and Applications -YunusCengel and John Cimbala, McGraw Hill.
- 8. Fluid Mechanics: Pijush K. Kundu, Ira M. Cohen and David R. Rowling, Academic Press.

Course No.	Course Title	Teaching Schedule		Allotr	Duration of Exam					
		L	Т	P	Theory	Sessional	Total	(Hrs.)		
ME-210N	DYNAMICS OF	4	0	0	75	25	100	3		
	<b>MACHINES</b>									
Purpose	To familiarize the students vehicles.	o familiarize the students with the effect of dynamic forces in various machines and ehicles.								
	Co	urse	e Out	comes	(CO)					
CO-1	To study the effect of sta	tic a	ınd dy	namic	forces on t	he compone	ents of m	echanisms		
CO-2	To study the design and v	worl	king o	f vario	ous gears an	d gear train	S.			
CO-3	To study the various type	es of	brak	es and	dynamome	ters.				
CO-4	To study the unbalanced forces and vibrations in various components of rotating and reciprocating machines.									
CO-5	To study the gyroscopic of	effe	ct in a	eropla	nes, ships, 1	two and fou	r wheele	ers.		

#### UNIT I

**Static force analysis:** Static equilibrium, Equilibrium of two and three force members, Members with two forces and a torque, Equilibrium of four force members, free body diagram, Principle of Superposition, static forces Analysis of four barmechanisms and slider crank mechanism,

**Dynamic Force Analysis:** D'Alembert's principle, Equivalent offset inertia force, Dynamic force analysis of four bar mechanism and slider crank mechanismEngine force analysis, Turning moment on crank shaft,Dynamic Equivalent systems, Inertia of connecting rods, Inertia force in reciprocating engines(Graphical and Analytical methods), Turning moment diagrams, fluctuation of energy, Flywheels, Flywheel dimensions, Punching Press.

#### **UNIT II**

**Gears:** Classification of gears, Gear terminology, Fundamental law of gearing, Forms of Teeth, Cycloidal and involutes profiles of gear teeth, Interchangeable Gears, path of contact, arc of contact, number of pairs of teeth in contact (Contact Ratio), Interference in involute gears, minimum number of teeth, undercutting,

Helical, Spiral, Bevel and worm & worm gears, Terminology, Efficiency

**Gear trains:** Simple, compound, reverted, Planetary or epicyclic gear trains, Analysis of Epicyclic Gear trains, Torques in epicyclic gear trains, Sun and Planet gear, Automotive transmissions gear train. Differential.

#### UNIT III

**Brakes:** Types of brakes, Block and shoe brake, band brake, band and block brakes, internal expanding shoe brake, Effect of Braking.

**Dynamometers:** Types of Dynamometers, Pony and Rope Brake Dynamometer, Hydraulic Dynamometer, Belt Transmission Dynamometer, Epicyclic train Dynamometer, Bevis Gibson torsion dynamometer.

**Governors**: Types of Governors, Watt, Porter, Proell, Hartnell, Hartung, Wilson-Hartnell, Inertia Governors, Sensitiveness, Hunting, Isochronism, Stability of Governors, Effort and Power of a Governor, Controlling Force.

#### UNIT IV

**Balancing of rotating masses:** Static and Dynamic Balancing, Single Rotating mass, Many Masses rotating in same plane and in different planes. Analytical method for balancing of rotating masses.

**Balancing of reciprocating masses**: Reciprocating Engine, Partial Primary balance, Balancing of Multi-cylinder in line engines, Balancing of Radial Engines, Balancing of V-Engines, Balancing of Rotors

**Gyroscope:** Angular Velocity, Angular Acceleration, pitching and rolling, Gyroscopic couple and its effect on Aeroplanes, Naval ships, Stability of an automobile (2 & 4-wheeers), taking a turn, Gyroscopic effect in stone crusher.

#### **Suggested reading:**

1. Theory of machines: S. S. Rattan, Tata McGraw Hill Publications.

2. Theory of Machines: V. P. Singh, Dhanpat Rai & Co. Pvt. Ltd.

3. Theory of machines: Kinematics and Dynamics by Sadhu Singh, Pearson Publications

**4.** Theory of Machines and Mechanisms.:Uicker, J.J., Pennock G.R and Shigley, J.E., 3rd Edition, Oxford University Press, 2009.

5. Mechanism synthesis and analysis: A.H. Soni, McGraw Hill Publications.

6. Mechanism: J.S. Beggs.

7. Mechanics of Machines: P.Black, Pergamon Press.

8. Theory of Machines: P.L.Ballaney, Khanna Publisher.

Course	Course Title	Te	achir	ıg	Allotr	nent of Ma	rks	Duration			
No.		Sc	hedu	le							
		L	Τ	Р	Sessional	Practical	Total	(Hrs.)			
ME-214N	<b>FLUID</b>	0	0	2	40	60	100	3			
	<b>MECHANICS</b>										
	LAB										
Purpose	To familiarize the st	ude	nts wi	th the	equipment	and instrum	entation	of Fluid			
	Mechanics.										
	Course Outcomes (CO)										
CO-1	Operate fluid flow e	quip	oment	and ir	nstrumentati	ion.					
CO-2	Collect and analyse	data	a usin	g fluid	l mechanics	principles	and expe	erimentation			
	methods.										
CO-3	Determine the coeff	icieı	nt of c	lischar	ge for varic	ous flow me	asureme	nt devices.			
<b>CO-4</b>	Calculate flow char	acte	ristics	s such	as Reynold	ds number,	friction	factor from			
	laboratory measurem	nent	s.								
CO-5	Identify and discuss foundation-level fluid phenomena including laminar to										
	turbulent transition, turbulence etc.										
CO-6	Measure pressure lo	ss d	ue to	frictio	n for pipe fl	ow.					

# List of Experiments:

- 1. To determine the meta-centric height of a floating body.
- 2. To determine the hydrostatic force and center of pressure on both a submerged or partially submerged plane surface and compare with the theoretical result.
- 3. To demonstrate the working of different pressure measuring devices.
- 4. To measure the pressure and pressure difference by pressure gauge, single column manometer, U-Tube manometer & Inclined tube manometer.
- 5. To verify the Bernoulli's Theorem.
- 6. To determine coefficient of discharge of an orifice meter.
- 7. To determine the coefficient of discharge of venturimeter.
- 8. To determine the coefficient of discharge of Notch (V and Rectangular types).
- 9. To determine the coefficient of discharge, contraction & velocity of an orifice.
- 10. To find critical Reynolds number for a pipe flow.
- 11. To determine the friction factor for the pipes.
- 12. To determine the minor losses due to sudden enlargement, sudden contraction and bends.
- 13. To show the velocity and pressure variation with radius in a forced vertex flow.

Course	Course Title	Te	achir	ıg	Allotr	nent of Ma	rks	Duration			
No.		Sc	hedu	le		of Exam					
		L	Т	Р	Sessional	Practical	Total	(Hrs.)			
ME-216N	<b>DYNAMICS OF</b>	0	0	2	40	60	100	3			
	<b>MACHINES</b>										
	LAB										
Purpose	To familiarize the st	ude	nts wi	th the	equipment	and instrum	entation	of Fluid			
	Mechanics.										
		Co	urse (	Outcor	nes (CO)						
CO-1	To learn about the w	vork	ing of	Flywl	neel.						
CO-2	To experimentally c	alcu	late C	Byrosco	opic couple	of a motor	ised gyro	oscope			
CO-3	To learn about balar	To learn about balancing of rotating mass.									
CO-4	To learn about the working of various types of governors.										
CO-5	To study various typ	bes o	of bral	kes use	d in autom	obiles.					

# LIST OF EXPERIMENT

1. To determine experimentally, the moment of inertia of a flywheel and axle compare with theoretical values.

2. To find out critical speed experimentally and to compare the whirling speed of ashaft with theoretical values.

3. To find experimentally the Gyroscopic couple on motorized gyroscope and compare with applied couple.

4. To perform the experiment of balancing of rotating parts and finds the unbalancedcouple and forces.

5. To determine experimentally the unbalance forces and couples of reciprocatingparts.

6. To calculate the torque on a planet carrier and torque on internal gear usingepicyclic gear train and holding torque apparatus.

7. To study the different types of centrifugal and inertia governors and demonstrateany one.

8. To study the automatic transmission unit.

9. To study the differential types of brakes.

Course	Course Title	Τe	eachir	ng	Allotr	nent of Ma	rks	Duration		
No.		Sc	hedu	le		of Exam				
		L	Т	Р	Sessional	Practical	Total	(Hrs.)		
ME-218N	<b>STEAM</b>	0	0	2	40	60	100	3		
	<b>GENERATION</b>									
	AND POWER									
	LAB									
Purpose	To make the students aware of different boilers and steam turbines using									
	different experiment	s.								
		Co	urse (	Dutcor	nes (CO)					
CO-1	Students will be able	e to	collec	et broa	d knowledg	e of about t	he differ	ent boilers.		
CO-2	Students will be able	e to	under	stand t	he working	of the stear	m engine	е.		
CO-3	Ability to determine the power and efficiency of the steam turbine and cooling									
	tower									
CO-4	Able to describe qua	ntit	ativel	y the h	eat balance	sheet of the	e boiler.			

# List of Experiments:

- 1. To study the Babcock-Wilcox boiler (Model).
- 2. To study thelocomotive boiler (Model).
- 3. To study the Lancashire boiler (Model).
- 4. To study the Nestler'sboiler.(Model)
- 5. To study various parts of the vertical steam engine.
- 6. To prepare heat balance sheet for given boiler.
- 7. To find dryness fraction of steam by separating and throttling calorimeter.
- 8. To find power output & efficiency of a steam turbine.
- 9. To study cooling tower and find its efficiency.
- 10. To study the various mountings and accessories of a boiler
- 11. To study and find volumetric efficiency of a reciprocating air compressor.
- 12. To find the efficiency of condenser.

Course	Course Title	Τe	eachir	ng	Allotr	nent of Ma	rks	Duration		
No.		Sc	Schedule				of Exam			
		L	Т	P	Sessional	Practical	Total	(Hrs.)		
<b>ME-220N</b>	PRODUCTION	0	0	3	40	60	100	3		
	<b>TECHNIOLOGY</b>									
	LAB									
Purpose	To make the students understand the different types of machines in production									
	industries and welding	ng r	nachi	nes.						
		Co	urse (	Outcor	nes (CO)					
CO-1	To practice on Millin	ng r	nachii	ne						
CO-2	To make gears and s	tud	y grin	ders.						
CO-3	To study the working CNC machines.									
CO-4	To carry welding ou	To carry welding out using TIG/MIG Welding machine.								

# **List of Experiments:**

1. Practice of slab milling on milling machine.

- 2. Practice of slotting on milling machine.
- 3. To cut gear teeth on milling machine using dividing head.
- 4. Introduction to gear hobber, demonstration of gear hobbing and practice.
- 5. Introduction to various grinding wheels and demonstration on the surface grinder.
- 6. Introduction to tool and cutter grinder and dynamometer.
- 7. Study the constructional detail and working of CNC lathes Trainer.
- 8. To carry out welding using TIG/MIG welding set.
- 9. Introduction, demonstration & practice on profile projector & gauges.
- 10. To make a component on lathe machine using copy turning attachment.
- 11. To cut external threads on a lathe.
- 12. To cut multi slots on a shaper machine.
- 13. To perform drilling and boring operation on a Component.

Course No.	Course Title	Teaching Schedule		Allotr	rks	Duration				
		Schedule					of Exam			
		L	Т	Р	Theory	Sessional	Total	(Hrs.)		
MPC-202N	ENERGY STUDIES	3	0	0	75	25	100	3		
Purpose	To make the students conv form of Energy	o make the students conversant with the basics concepts and conversion of various orm of Energy								
	Co	urse	e Out	comes	(CO)					
CO-1	An overview about Energ	gy, E	Inergy	' Mana	gement, Au	dit and tar	iffs			
CO-2	Understand the Layout an	nd w	orkin	g of Co	onventional	Power Plan	ts			
CO-3	Understand the Layout and working of Non-Conventional Power Plants									
CO-4	To understand the role of India	To understand the role of Energy in Economic development and Energy Scenario in India								

#### UNIT-I

**Introduction**: Types of energy, Conversion of various forms of energy, Conventional and Non-conventional sources, Need for Non-Conventional Energy based power generation.

**Energy Management:** General Principles of Energy Management, Energy Management Strategy.

Energy Audit: Need, Types, Methodology and Approach.

#### UNIT-II

**Conventional Energy sources:** Selection of site, working of Thermal, Hydro, Nuclear and Diesel power plants and their schematic diagrams & their comparative advantages-disadvantages.

#### **UNIT-III**

**Non-Conventional Energy sources:** Basicprinciple, site selection of Solar energy power plant, photovoltaic technologies, PV Systems and their components, Wind energy power plant, Bio energy plants,Geothermal energy plantsand tidal energy plants.MHD

#### **UNIT-IV**

**Energy Scenario**: Lay out of power system, Role of Energy in Economic development, energy demand, availability and consumption, Commercial and Non-commercial energy, Indian energy scenario, long term energy scenario, energy pricing, energy sector reforms in India, energy strategy for the future.

#### **References:**

- 1. Energy Studies-Wiley Dream tech India.
- 2. Non-conventional energy resources- Shobhnath Singh, Pearson.
- 3. Soni, Gupta, Bhatnagar: Electrical Power Systems Dhanpat Rai& Sons
- 4. NEDCAP: Non Conventional Energy Guide Lines
- 5. G.D. Roy :Non conventional energy sources
- 6. B H Khan : Non Conventional energy resources McGraw Hill
- 7. Meinel A B and Meinal M P,Addison: Applied Solar Energy- Wesley Publications
- 7. George Sutton: Direct Energy Conversion -McGraw