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5.5 Coherent Detection of Signals in Noise:
Maximum Likelilood Decoding

Suppose that in each time slot of duration T seconds, one of the M possible signals 5i(t),

(1), ...

tation, the signal s, (¢), § = 1,2,...

» Sw(f) 1s transmitted with equal probability, 1/M. For geometric signal represen.
» M, is applied to a bank of correlators, with a commgy

input and supphed with an appropriate set of N orthonormal basis functions. The resulting
correlator outputs define the signal vector s,. Since knowledge of the signal vector s, is g
goed as knowing the transmitted signal ¢ (¢) itself, and vice vVersa, we may represent 5,(1)
by a point in a Euclidean space of dimension N = M. We refer to this point as the trans.
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585 Maximum Likeliliood Decoding 323

::::ft:« ::‘ ::I‘l.l't';‘:t{":,l;,'::\;\‘ IP:; :)T;ig: ‘.{:‘ ::‘r;:cdl f:c":::':‘;;l"n,u-ss.};;c pnints corresponding to the set
lowever, the representation of tf il ‘(‘_tmc ‘Hmf" .

| He VR . e recetved signal x(t) is complicated by the presence
of additive noise to(f). We note that when the received signal x(t) i lied to the b
ol N correlators, the correlator outputs define the oby oAt ‘13 S lf( (o the a'nk
(5.48), the vector x differs from the signal vector s, b l:;k:rVaylc)xl vector x. From i;qum,on
15 completely random. The noise V;t\.'t‘()r Wi cun;|:l);:cl';"::‘l,':::::;:;’r?7’c:r Kh?ﬁ? nrllcnmn((tnj
the converse ot this statement, however, 1s not true. The n‘oi.sc vec‘tor \3 rc;:rle‘s(:::s"t}hﬂ);
portion of the noise w(t) that will interfere with the detection process; the rcmainil;g
portion of this notse, denoted by 1'(1), 1s tuned out by the bank of corrt:l:uors.

Now, based on the observation vector x, we may represent the received signal x(¢)
by a point in the same Euclidean space used to represent the transmirted signal. We refer
1o this second point as the recerved signal pomt. The received signal point wanders about
the message point 1n a completely random fashion, in the sense that it may lie anywhere
nade a Gaussian-distributed “cloud” centered on the message point. This s dlustrated in
Figure $.7a for the case of a three-dimensional signal space. For a particular realization
of the noise vector w {i.e,, a particular point inside the random cloud of Figure 5.7a), the
ationship between the observation vector x and the signal vector s, is as illustrated in

rel
Figure 5.7b.
We are now ready to state the signal detection problem:

Given the observation vector x, perform a mapping from X to an estimate rir of the
transmitted symbol, me ma way that would minimize the probability of error in

the deciston-making process.

en the observation vector X, We make the

Suppose that, giv ey
decision, which we denote by P(m,] x), is snmply.

probability of error in this
P.(m,) x) = Plm, not sent|x)
= 1 - Plm, sent|x)

rion is to minimize the probability

The decision-making crite obabil
a decision. On the basis of Equ

given observation vector X into
fore state the optimum decision rule:
Set 1t = m, if

P(m, sent|x) = Plm sent|x)  forallk Tﬁ ]

é;
Neise cloud
5 AT
¥ 2.
- o,
T
5 :
p
/
o
"
. () I
:‘l(;l.‘lll. 5.7 Ilustrating the effect of noise perturbation, depi
ceived signal point, depicted in (b)- E
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324 CHAPTER 5 ® SIGNAL-SPACE ANALYSIS

here k = 1, 2,..., M. This decision rule is referred to as the MaXimuy, |
whe =1 &0y

ability (MAP) rule. N
prob z-lzhcriondition of Equation (5.53) may be CXPrf:SSCd more explicitly i, termg
a priori probabilities of the transmitted signals and in terms.of the likelihog df of the
Using Bayes’ rule in Equation (5.53), and for the moment igno

i . Ct
Ing possibje ties in(bns.
decision-making process, we may restate the MAP rule as follows: the

OSte’iOrj

Set 1 = m, if

pifx(x|my)

) 1s maximum for k = ; (5-54)
x{X

where p, is the a priori probability of transmitting symbol my,
probability density function of the random observation vect

of symbol m,, and fy(x) is the unconditional probability dens;
(5.54) we may note the following:

Fx(x|m) is the
or X given the ¢
ty function of X

Condi[ional
ransmigsjg,

.In Equati(m

> The denominator term fx(x) is inde

> The a priori probability Pr = p, when all the source symbols are transmitted wigh
equal probability.

> The conditional probability
ship to the log-likelihood fy

Accordingly, we ma
as follows:

pendent of the transmitted symbol.

density function

fx(x|m,) bears a one-to-one relation-
nction I(m,,).

y restate the decision rule of Equation (5.54) in terms of I(m,) simply

Set i = m, if

e (5.55)
I(m;) is maximum for k = ;

: respondingly referred to as the maximum likelihood decoder. Ac-
cording to Equation (5.55), a maximum lik

: elihood decoder computes the log-likelihood
fun;tlons as metrics for all the M possible message symbols, compares them, and then
declqes in favor of the maximum. Thus the maximum likelihood decoder differs from the
maximum a posteriori decoder in that it assumes equally likely message symbols. B

It is useful to have 4 graphical interpretation of the maximum likelihood decision
rule. Let Z denote the N-d;

. _ . Ve refer
4 mensional space of 4] possible observation vectors x.-V'bc re le
10 this space as the observation sPace. Because we have assumed that the decision ™
mustsay i1 = m, where j = 1,2

) . ingly
. %y M the total observation space Z is corresponding
-decision regions

’ denOIEd by Zl) 223 e, oy ZM- ACCO[dingly’ we ma;
(5.55) as follows:

Observation vector X lies in region Z, if
Kmy) is maximum fork = §

. . 8 kes
, the receiver simply ma

o
k> 5ay, the che; S on the boundary between any ':’n g

. b} C ol_ ) il : B
is resolved g pr; ’ ce between (he tWo possible decisions 77 =

0ri by the flip of 4 fair coin_ Clearly, the outcome of such an €¥

not affect the ultimate value of
s : the probah:il: : is boundary»
dition of Equation (5.53) is satisge dpwit E?:;tzqfa?;;ozi;xce, on this
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V8 Mavimws Likelibaod Decading 125

The maxaimum hkehhood decision rule of Equation 15551 or 0 ErOmetric counter
part described 1n Equation (5.561 is of a genenc kind, with the channel poiss wf) twnst
sddive as the only restriction imposed on it. We next specialire this rule for the cace when
.ot w both white and Gausuan, S

From the log-hkelihood function defined 1n Fquation (551} for an AWON channe!
we note that ey ) attauns ats maximum value when the summation term

S

N
%
4\‘_4 “‘I N ‘i.’il
=
w pemmired by the chowe k = 1. Accordingly, we may formulate the maximem bkelihond
decxwon rule for an AWGN channel as

Observation vector x lies in region Z, 1o
N {5.57%
E (x, = $3,)" is minimum for k = §
r=1

Next, we note from our earlier discussion that (see Equation (5.14) for comparison|

N
2 =)l =Ix-s]’ i5.5%)
=1
here | x — 5. || 1s the Euclidean di between th ived signal ,
here | x — s, [ 1s the Euclidean distance een the received signal pomnt and messages
omt, represented by the vectors x and s;, respectively. Accordingly, we may restate the
decasion rule of Equation (5.57) as follows:

9 9

Observation vector x lies in region Z, if

; ] - : {$.3%
the Euclidean distance | x — s, | is minimum for k = z

Eqguanon (5.59) states that the maximum likelithood decision rule 1s somply to choose the
message point closest to the received signal point, which 1s intuitively sansfving.

In practice, the need for squarers in the decision rule of Equanon {5.5%) = avorded
by recognizing that

N N N ~
2 (x; = s")z = z x,l -2 Z X5, * E $i (380

=1 =1 =1 r=l

The irst summation term of this expansion is independent of the index k and may therefore
be ipnored. The second summation term is the inner product of the observation Yector X
254 ugnal vector 3,. The third summation term is the encrgy of the transsmsteed sigeal
5,11}, Accordingly, we may formulate a decision rule equivalent to that of Fquation {5.39)

i !‘J“uwg;

Observation vector x lies in region Z, i

2_:‘ X5 7 5 E, s maxymum for & = 1 .
where E; is the energy of the rransmitted signal s, (2):
E, = }Nj st, (S84
r=1 =
From Equation (5.61) we deduce thar, for an AWGN tmﬁ‘h“‘m‘*’“ regso

e regions of the N-dimensional observation space Z, boul
mensional hyperplane] boundaries. Figure 5.8 shows the exa
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FIGURE 5.8 [llustrating the partitioning of the observation space into decision regions for the
case when N = 2 and M = 4; it is assumed that the M transmitted symbols are equally likely.

M = 4 signals and N = 2 dimensions, assuming that the signals are transmitted with equal 2
energy, E, and equal probability.
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