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Theories of Elastic Failure

13.1. INTRODUCTION

A machine clement or a structural member may fail to perform its function
under a given loading due to many rcasons, the most important out of which ig
the yielding. Beyoud yield point permanent change in the machine clement under
load occurs, which renders it unfit to perform its assigned function. Duc to this
reason, yielding is considered as the most important failure criterion.

Yield point under uniaxial loading can be obtained by testing the material
specimen in laboratory. Then it can be said that any machine clement when
loaded in uniaxial direction will fail at the same valuc of yield stress as was
determined in laboratory. However, what happens under multiaxial loading, i.e.
the compound stress system is not so casy o comprehend or calculate. As a
matter of fact, it cannot be said with cent per cent surety what cxactly it is that
causes failure ; whether it is normal stress. shear stress or any other paramecter.
Of course, various theories have been put forward and compared with
cxperimental results to prove their validity or otherwise. So far no single theory
has been developed which agrees with experimental results in case of all
materials and all conditions of loading. We shall discuss here, however, five
theories of failure, each of which has its limited usc. These are :

~~1. Principal stress theory
2. Maximum shear stress theory
3. Principal strain theory

4. Total strain cnergy theory

a5, Shear strain energy theory.
13.2/ PRINCIPAL STRESS THEORY (RANKINE’S THEORY OR
MAXIMUM NORMAL STRESS THEORY)
According to this theory, the failure occurs when the maximum principal
stress in the ¢ slem | I icld stress in simple tension

or compression test,

If 6, and ©, are the principal stresses in a 2-dimensional stress system and

% g is the yield stress in simple tension or compression, then according to this
theory the failure will occur when :

o, =%0

L(13.1)

0,=%0 .(132)
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As the experimental evidence shows that brittle materials fail due 1o normal
stresses, usually tensile, this theory may be used to predict failure in brittle
maderials. However, the brittle materials do not have a yield point. As such,
instcad of yicld stress, ultimate stress O, is generally used as the failure criterion.
It is common Lo use a factor of safety alongwith o, since the ultimate failure in”
a brittle material occurs suddenly without warning. In this way, the failure
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6, =k .(13.4)
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Yield Iecus is a square on 0} =0, diagram as shown in Fig. 13.1. In three
dimensional stress system, the yield surface is a cube with sides 20, each with
origin at the centroid of the cube (Fig. 13.2). '

It must be mentioned here that this theory predicts failure at the same stress
level irrespective of whether the stresses are tensile or compressive. This does
not agree with practical results since brittle materials, e.g. cast iron, are much
¢ZIn tension than in compression.

.~ MAXIMUM SHEAR STRESS THEORY (GUEST’S THEORY OR
COULOMB’S THEORY OR TRESCA THEORY)

In a 2-dimensional stress system, maximum shear stress may be any of the

following :
0,-0; 0 Oy
S~ (v 03=0)
2 272 :
This theory states that the failurt occurs when maximum shear stress induced
in the compound stress system reaches the value of maximum shear stress in

simple tension or compression test at yield point.
Now il #a, is the yicld stress. then the shear stress due o this

o7
—F=2

2.
. According to this theory the failure occurs, when
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0,-0,=%0 ...(13.5)

6,=%0 ..(13.6)
+ 0, ..(13.7)
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n

All the above equations can be written as,
‘(0| -63)l=00 .(138)
The yield locus is shown in the Fi ich i i
) own in the Fig. 13.3, which is commonly called the

Tresca hc,xagon In three-dimensional stress system, the yield surface is a
hexagenal prism with open ends. The axis of the prism is equally inclined to
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Fig. 13.3
cach of the axes G, 6, and 0. Looki‘pg in the direction of the prism axis the
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It may be scen from the cquation governing this criterion, viz.
I+ (G, - G)l = G, that adding the same normal stress to 6; and G, will not affect _
the response of the material. In other words, on adding of hydrostatic stresses,
tensile or compressive, no change in material response is predicted by this theory.
This observation is true in case of ductile materials.

Maximum shear stress theory has been found to give conservative and hence
safe results for ductile materials. Due to this reason and also because of the
simple foverning cquation, the theory is widely used for ductile materials.

y/PRINCIPAL STRAIN THEORY (OR ST. VENANT’S THEORY
OR MAXIMUM NORMAL STRAIN THEORY)

This states that the failure by yielding will pccur when maximum strain in

AXIS OF THE
PRISM L

the com ound stress s ~hes thevalue of maximom strain at-yield poin
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a c R
Strain in the direction of T =fl— v _El (v = Poisson’s ratio)
' /. m=-
E mE oV
Strain in the direction of % _v3
Stra of o,=—F -V~
in in the direction 2 E E
0, o
=E mE
If + o, is the yicld point stress in simple tension or compression test. the

O

maximum strain corresponding to this =+ £

’ .
According to this theory,
a o a
A R L

EVETE
g; g Og
—“_y—==%
E YETE
0, -V0,=%0g .(13.9)
0, -Vvo =+ 0y ..(13.10)
ce 1Lis no

The experimental evidence docs not sup
more in_practical use.

Plotting the above equations, we

In 3-dimensional stress system the yield surface is glvcn by the six faces of
two, three-sided straight pyramids, placed back to back in inverted positions

o2 o=V =

get the yield locus as shown in Fig. 13.5.

oj—-V02=00

0-V02=~0b
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The axis of the pyramids is equally inclined to the principal axes. The sections.
_the vield surface normal ta the axis are eq
of . mlalcml_tmngles—lec principal
stress th vie his-s-thus-also bodnded.
13.5-TOTAL STRAIN ENERGY THEORY (OR BELTRAMI OR
HUBER OR HEIGH THEORY)

According to this theory, the failure will occur when the total strain energy
density in the compound stress system is equal to the stfain energyjensxg,wn
yield point in simple tehsion or compression test,

If ¢, and 0, are the principal stresses, total S. E densny (1 e. slraln energy

per unity volume) is given as .
u=ﬁ[0’f+0§—2\'0‘,0’:] .-(a)
If £ g, is the yjeld stress in simple tension or compression test, then strain
cnergy density = L]
2E (b
According to this theory, (a) and (b) should be equal.
ie. O3 =0} +03-2v0, G, .(13.11)

Plotting the above equation (and taking v = i
A I g v=0.3) we get the yield locus as
cllipse (Fig. 13.6). The _major and minor axes of the ellipse are at 45° and

135° respectively to the g, axis .
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13%6. SHEAR S.E. THEORY (DISTO
RTION ENERGY THEORY
MISES-HENCKY OR VON MISES THEORY) %

undc/r&[chcordmg to this theory, the failure will occur when the shear S.E. density
c compound stress system is cqual to the shcar SE. dcnsnly at yield point
in simple tension or compression test. PO,
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- s systcm
i Shear S.E. density in the general compound sIress sy )
i 1+v, 2 2 :_602_6201__0]0']
| us="3p [oj+0:+03—0) y
. ? (13.12)
L2Y ) _0x)+(03—-01)]
=——[{0, - 62)"+ (02
6E (1= 3 .
Shear S.E. density at Y.P. in simple tension or comp. tes
~ .—_— (13.13)
_ 1+v O':
“3E 7
Shear S.E. density in biaxial compound stress system
2, o7 L(13.14)
= I:‘EV [o7+03-0,0:]
i is h =Eq. (13.14)
According to this theory, Eq. (13.13)=Eq s

1_ 2. 2 go
2 g, =0} + 03— 0,02 .
Le., 2 =0;+03 -
alternatively by means of a von Mises

. o d
The same result may be cxpresse
1Ty as
egr_u;vmt_ms.aumuuf_ﬂmx_dcﬁmd
{6,=\/?, +0;-0,0; }

occur when this equivalcn! stress (which is a normal

..(13.16)

Then failure woulc:l
stress) is equal 10 the yicld stress. Gp . ‘ o
On plotting Eg. (13.15) on 0 - 0, axes, we gel yield locus as an cllipse as

shown in Fig. 13.7.

Fig 13.7

For three-dimensional stress system, yield surface is an open right circular
cylinder equally inclined to the ), 0; and 03 axes (Fig. 13.7). The cross-sections
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T3

oy
Fig. 138
of the cylinder looking in the direction of its axis are circles of radius equal to
2
3 %

As can be seen from the yield locil, this theory agrees fairly well with the
maximum shear stress theory. The hexagon representing the later is enclosed by
the cllipse representing the former. Thus the later is more conservative.

This theory has been found to agree best with the experimental resulls on
ductile materials and for that reason it is extensively used in design.

Note. The octahedral shear stress is the shear stress o octahedral planes. These
are the planes equally inclined to the principal planes. This stress is given by,

T =10, - 07+ (0, - 09 + (0; - 6 ))7 .(13.17)
- For uniaxial loading, at yield point,
V2
Twr="3 09 ..(13.18)

and for biaxial stress system,
2
Tper= 3 g +03—-0,0,

- Equating Eqs. (13.17) and (13.18) or Eqs. (13.18) and (13.19), we get the
same results as obtained earlier in the case of shear S.E. theory.

--(13.19)

Thus this theory called, ‘Octahedral shear stress thory’ gives exactly the
same failure criterion as given by ‘shear S.E. theory'.

L,Ifﬂmple 13.1. A thin eylindrical pressure vessel of diameter d and wall
thickness 1 is made out of a material whose yield stress is ©,. If the vessel is
subjected 1o internal pressure p, determine the value of p at which yielding of
vessel material will take place. Use von Mises eriterion of failure,
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Sol. The hoop stress and the |

g

.ol
St= 5
iy

g.= ar

~ von Mises &g

aivalent stress. from Eq. (13.16).
{ d‘: 2 pa)(pd
9e= [El—r)] +[»:) _(21J[4r

For yieldin

\
N3 pd
=
g to ke

place. G,=GCq

[

=
FEoq,
a0,
P=3a

E;};m/ple 13.2. At a poi

y nt in a steel
occuring is showr in Fig. 13.9.
Tresca (ii} Von Mises criteric. Yield point f
s2 M7,

for steel is 320 MPa.

s 38 MPa

==

Sol.

ncipal stresses are,

Fig 139

9652 —\,96—(—52): 2
UI_I=——2—'1‘ {_ 2 +(38)
=22+832

=105.2 MPa, -61.2 MPa

cngi(udiﬂiﬂ stre

pd

structure. the state of plane stress
Determine the safery factors according to (1)

,,.»—/
G fa-aaz
2 L 2
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ss respectively are

given by,
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<. Absolute maximum shear stress

Also from Eq. (13.16),

e ——
Von Mises cquivalent stress,

471
- 1052 - (-61.2) —83.2MPa
2
(i) Tresca criterion
Factor of safety

0, =V(105.2)7 + (- 61.2)7 = (105.2) (- 61.2)
‘= 145.8 MPa

-

b’,’ er
(i€) Von Mises criterion
Factor of safety = ng
|

A
) A, —

>

o~

mger,\' as 2. Poisson’s ratio may be taken as 0.3.
250
Gy = =

\/Example 13.3. A steel bolt is subjected to a direct pull of 20 kN and
transverse shear force of 10 kN. Calculate the diameter of the bolt using all
theories of failure. Take yield point stress for steel ag 250 MPua and factor of
Sol. Safe value of = 125 N/mm*
Let

Then o

_20x10’
. A

A = Cross-sectional area of the bolt required, mm
_lox10' -

B A
A

01 Gl 1 7
0',.0'2=—2 + 3 +1
L

_20x10°

1} 3
i,\/ZOxlO - 10x 10°
2A 2A

4
2 =% vy
AR A
(l
o GI

2
_2414x 10"
P

mm:
_-4l4ax10*

o
g A
I Principal stress theory

N/

2
2.414 % 10"

mm
A

=125
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