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Thick Cylinders

14.1, INTRODUCTION
While dealing with thin cylinders it is assumed that the circumferential stress

is constant over the cross-section of the cylinder and the radial stress ig
negligible. However, it is found that as the thickness of the cylinder increases in
proportion to its diameter, these assumptions are no longer valid. Thijs
necessitates a more exhaustive analysis in case of thick cylinders.

Itis seen that the error involved in the value of the maximum circumferential
stress by using thin cylinder formula is less than 5% in casc of cylinders with
ratio of their diameter (<) to thickness (t) 20. This gives us a broad classification

1
of thick cylinders as the ones having ‘71 <20. & ‘% < /20

14.2 LAME’S EQUATIONS

The following assumptions are made :

1. The material of the cylinder is homogeneous and isotropic.

2. Mcdulii of elasticity for the cylinder material in tension and compression
are equal.

3 The plane sections of the cylinder perpendicular to the longitudinal axis
remain plane after the cylinder has been subjected to pressure,)This assumption
is valid at a considerable distance from the ends so that the restraining cflect of

the ends is negligible there. The length of the cylinder is assumed to be
sufficiently large for this to be valid.

Or
I

S

e
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This assumption implies that the longitudinal strain, ¢, is constant over the
cross-section of the cylinder,

In this chapter, circumferential and longitudinal stresses will be assumed
positive when tensile, whereas radial stress will be 1aken to be positive wh_en
compressive. From generalized Hooke'’s law and Fig, 14,1, longitudinal strain,
g, is given as, o
For CL,\‘\nd‘-UL

ot fludd

va, vao,

E E

Z

m

+

o

[o,-v (o.-0,)]

ml- ma

Since E, v arc material constants, g, is cither zero or constant (Sec Art, 14,3)
and g, is assumed constant, (0, —,) must also be a constant, say cqual to 2a,

ie.,

= 9 ,V(

O.-0,=2a

~(14.1)
Tr+ 60}

c.=2a+0,

Fig. 14.2

Consider a cylinder of length L, inner radius ry and the outer radius r,. Let
this cylinder be subjected to pressure p; on the inner surface and P, on the outer
surface. Of this cylinder, consider an clementary annular ring of inner radius r
and width &r. One half of this ring with various stresses acting on the same (free
body diagram) has been shown separately (Fig. 14.2). For equilibrium of this
clement the algebraic sum of the forces in any direction should be zero.
Considering forces in the downward direction,

(0,+80,) [2(r+8rL]-0, 2L+ 20, 8rL=0

or 9,/r+o,-,8f'+r80,+8/c/8/r—9,/f+cc-§f=0

Neglecting the term 8a, - 8r being very small relative to other terms (being
product of two small quantitics), and dividing throughout by &r,
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Sa
g, + ”ig‘,fr‘*'UL =0
do
= —(} — p—ot ..(14.2)
o O

or. in the limit,

Substituting this value of o, into Eq. (14.1),

do, 2a+
-0, -r——=z2a+d,
O =" "

do,
—-r7=2(a+0',)

0
or i
d(T, dr
or, ——=-2"
a+go, r

In(@a+o,)=-2Inr+Inb

Inlcgrating,
(‘In &’ being the constant of integration)

=In b
pi
_ b
or. (1+0',—?
Le.. [ 0,=%-a (14.3)
(14.4)

Equations (14.3) and (14.4) are called Lame’s equations and are the basic
equations employed for the determination of stresses in thick cylinders. The
constants ‘a” and ‘b’ in these equations can be evaluated with the help of given
boundary conditions as described below for different cases.

14.2.1. General case
o,=p; when r=n,

and o,=p, when r=r,
Substituting these in Eq. (14.3),
b
p,=?—a andp”=7—a
.[ o
pi-pa=g-op[ ot
o LK,

THICK CYLINDERS

and

and

ie.,

o,=4_a

A

=(P"P) f;llﬁ _Pl'%_Pv’ﬁ
T P-h  h-n

_b
O't,——2'+a

r

22 ) ’_2
_rlrt-ﬁ Pi—P, p'r; Py
T2 22 2 2

r Fo—1; To— 1

22 2 2
_rira pl—pllgplri_pﬂr(l
=73 3 5 .
et s

14.2.2.‘Thic}< cylinder subjected to internal pressure only

and

o,=p, when r=r,

0,=0 when r=r,

Substituting these in Eq. (14.3),

and

b b
p=—3-a and 0==-a
rl rﬂ
b b 2_ 2
P=0=3-5=b"5
LA it
] e
i'a
b=pi=—
Fo— T
! 2
Ia_b-;p ri
===p -
o Pttt
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Substituting values of ‘a’ and ‘6’ in Egs. (14.3) and (14.4),

|
Q

a
I
v e

1]
e
™ :I‘“ :\
—
ol
|
[

Q
1
S|y
R
ol
—/

A
+
[

and

-,"q
I
Sh|ag
' -~
S
—
Tl
+
[

.(14.6)

ie.,

It is seen that 6, is maximum when r minimum, i.e. when r=r;

prt (1

0,7 3|3+t

..(14.7)

rD
where k=— ...(14.8)

Al r
so,atr=r, o,= =2
’ n-r|q

..(14.9)

Also, 0, is maximum at r=r,
O, =P

mac

7 2ry?
I'oz_f'{_2

e s - 5 SRR AN
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. At the inner surface,
S _ratn K+l
S r-n K-l
Thus the distribution of radial and circumferential stresses is as shown in
Fig. 14.3. It may be noted that maximum stress in the cylinder is the hoop stress
at the inner radius.

14.2.3. Thick cylinder subjected to external pressure only
0,=0 when r=r,

..(14.10)

and o,=p, when r=r,
Substituting these in Eq. (14.3) and (14.4),

OE%,-_H and p0=%—-a

o

b b_ (27
AT
ar
s
and a=£2= ‘Paziz‘
Ti Fo—Ti
Substituting values of ‘a’ and ‘b’ in Egs. (14.3) and (14.4),
o=t g ‘
r
pory 7]
i ‘é-rf[?‘ i
P [
and oc=—r§_'%[?+lJ
. P[]
ie., 0’,.c=—r3_r’2[? + 1_ .(14.11)

In Eq. (14.11), since r; will always be less than ro» O, will be +ve, i.e.,
compressive and o, will be — ve, i.e. also compressive. It is seen that Eq. (14.11)
are similar to Eq. (14.6) for thick cylinder subjected to internal pressure only.

O, is maximum when r is minimum, i.e. at r= r;

2
6 = P,r; i+l
~R-An
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- L)
B -, p‘."')
b
T r,
Bo-p, \"— o where ke NARNRY
S| ti

Also, atrsr, o= "yl

a1y

WS

ro2+ rlZ
I‘z:,2 —_ fl?

Fig. 144

Thus the distribution of radial and circumferential stresses in this case is
shown in Fig. 14.4, It is seen that maximum stress in the cylinder in this case
also, is the hoap stress at the inner radius.

14.2.4. Thick cylinder with no inner hole

When such a cylinder (r;=0), the common example of which 15 shaft, is
subjected ta external pressure, constant *b* in Eq. (14.3) and (14.4) has (o he

JIHCK CYLINDURS 493

seron o uvoid stresses being infinite for any magnitude of external pressure. Thus
from L. (1.3 and (1.0),

G, = —amdo, = +a

l O 2 -0, rma ]! L1d016)
which means both the tadfal as well circumittrential stresses are uniformly

distributed and eachiis equal in magnitude 1o the external radial pressure. Further
Doth will be compressive in nature,
14,3, LONGITUDINAL STRESS

() 10 the eylinder is not closed at the ends (e.g. gun barrel) or when (he

pressure is retained by o piston at one or both ends ol the eylinder (Fig. 14.5),
the Tongitudinal (e axial) siress is zero,

) 1T a)

e a, =

1

OO

o — —

ZIRENZ
7
SN, S

RRERR

Y\\\\\f\\\ NN

AN
NNNNNNNNNNNNNNNY

(

(a) (b)

Fig. 145
(0) I, however, the cylinder is closed at the ends by caps (Fig. 14.6), it will
be subjected 1o stress in the longitudinal dircction also. Thus in the general case
of a eylinder subjected to pressures, both internal and external, the longitudinal
stress is given by,
2 2
M i =p,n e

2 2
T ("u - '.l)

= 7
_f’l': "I"h

['C\ g (1417 by
N ? 'u—":
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494 ' pof i .+,
NN >V__ 2
# a J
‘¢ I / Po [From Eq. (14.3) and (14.4)]
p°——/'- I /"—
/ ——/ﬂ— , ...(14.18)
— e — / i.e.
Z (3708
_’/'._ ' r_’ This will be maximum when ‘r’ is minimum, i.e., when r=r,. Therefore,
——4 -
—.%‘— [ —’%‘m absolute maximum shear stress occurs on the inner radius and is equal to :2-
»%‘_ Y —’-%‘— . o ) d
J 4 g7 This acts in a direction 45° to o, and G,
- le—
NN t414.5. GRAPHICAL METHOD .
* It has been explained in Art. 14.2 how the Lame’s equations can be so]\"cd
i mathematically for different cases. These equations can also be solved easily
Fig. 14.6 with the help of graphical method as explained below for two important cases.
In case of internal pressure only, therefore, Case. 1. Thick cylinder subjected to internal pressure only
r (14.17 ¢) In this casc, o,=p; when r=r,
U:_pirz—’,z and 6,=0 when r=r, E
=g -(14.17 d) Ope—|—»0 ¥
—Fi 2
k*—1 o=
. . ; G TENSION o
(c) In case, the cylinder is built-in between rigid end supports, axial strain, N o T o
i.e. €, = 0. In that case, < ne P oo 2 N
| %Y (6,-06)=0 TB ] A c
g,=— -4 (0,-0)=
cEEC ’ . P, comMmp, I: 1 o 1
i |
(where o, is tensile and c,- is compressive) D Fig. 14.7
14.4. PRINCIPAL AND SHEAR STRESSES : Procedure. (i) Draw line BOC and mark on nlpomts B and C at distances
Since there is no torque acting on the cylinder, the stresses o, , G, and o, are v 2 from O. Also mark points A and F at distances = on both sides of O.
inci i i is always ! o
the three principal stresses. Out of these @, is compressive and o, is a = " . ‘
greater than o,. Therefore, we can write that, : (if) Draw perpendicular BD to line BC so that BD =p,
(#i7) Join D with A and produce line DA to meet the perpendicular line from
=0, 0;=0,and0;=0, ’ :
- eSS &= C to BC, at point E. Also draw perpendicular to BC from point F, which meets
Therefore maximum shear stress, 1,,,,, is given by line DE at G.
0,-0y (iv) Then CE=o0, i.e., the circumferential stress at the inner surface and
Tmar = T FG=a,, ie. the circumferential stress at the outer surface. These can be easily
G.-(-a) ¢ _ measured. Stresses above the datum line BC are tensile while thase below it are
E% (" g, iscompressive) compressive.

S S N e R A S0 T s e e
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n that if any two quantities out of

it is see .
(v) In the same way o stress values can be determined by

nown, the other tw
Gyt Oron Ocir Oca ﬂl;C }\no >
proceeding in a similar way.

Proof. Consider similar rriangles' ABD and AEC.
BD _ BA
Then, CE-AC
1 1
22 .2
Pi r|2 ’% _ To— T
2= ==
x G _17+_172_ r‘2,+ r;
ry i
r(z,+ rf
G =Pi '% _ r% !

which is the same as Eq. (14.7),
Considering similar triangles ABD and AFG,

BD _BA
FG ™~ AF
1.1
p -
o5 O 1.1 27
5+
'll rll
2r;
G =P _rz'

which is the same as Eq. (14.9). .

Both o, and o, are tensile as seen from Fig. 14.7.

Case 2. Thick cylinder subjected to exterx'lal pressure only

In this case, 6,=0 when r=r;
and c,=p, when r=r,

Procedure. In an exactly similar way as described in the previous caseé
make AD perpendicular to BC at A and equal to p,.. Join B with D and produc
BD so that the perpendiculars to BC at points F and C meet BD pr'oduccd al
points G and E respectively. Then CE and FG are 6,; and o, respectively.

Proof. Considering similar triangles ABD and CBE,

AD _BA
CE” BC
1.1
: Po_n T Temni
or b —= -
Oci rl,2+_’l_? 2",,
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oi(comp)

which is the same as Eq. (14.12).
0, Is compressive as seen from Fig. 14.8.
Considering similar triangles ABD and FBG,

AD _BA
FG ™ BF
1 1
27 2 .2
Po o ry Ty—T
or —_—_= ==
S 1, 1 724r
7o
27
Ceo=Po r(z)_r? :

'ARIATION OF RADIAL AND HOOP STRESSES WITH THICKNESS

We shall now consider the effect of decreasing or increasing the cylinder
thickness on 6. and o, in the case of a cylinder subjected to internal pressure
only.

14.6.1. Effect of decreasing the cylinder thickness

(f) Let r,=r+t
2
AR
Then from Eq. (14.7), ;= p,("#
(ri+0 —r‘2
(ri+ 1>+ 7

=P @ri+1) (1)

Scanned by CamScanner



498

Also from Eq. (1:49),

When ** is small,
and

~ For small value of 1,

MECHANICS QF MATEIIALY

2
2
) =I’ - 1
o (i N |
i r=r :
b]
2! !

.
=g, 3 M N (1)
“renten et

which is the same value as abtained for the ihin cylinder case directly.

(i) Let

Then from (a)™

a =0 =P;

‘2’} = i’!ré
Ta=Piay ™
)}
LT LUy
! .
i ey
R U]
ﬂn’l—ﬂul— r !
d=2r,

2 2
2
@ine

ey d
BUGEPTYY

d_
I pallll

O (m+ 2)1+m’

Pi
section,
a

Pi

& Error

~ Percentage error

4 (m+1)

Also from thin cylinder theary, where @,. is assumed uniform throughout the

LA _l(d) m
21 20r) 2
_(m+2) +nt m
4(m+1)
m+2

=._2('.ML.>< 100

Qn_-k?.f—&—m’
Am+1)

o m+2
27 2(m+ )

eylinder crossesection is not uniform i.e,, circul

[ Y IS L4
R e PR
{477 4 W
Fon pr = M),

247404 7) 5
Pepentuge e AL Vi) 471

s 77 ony

&3 & Win

7, ; p
Uhus 001 ccen thil thiu s i the yabis oA F toy wswtiienel 1
/

cylinder vs Jess than 5%, ey Cratin 15 ) Wit b5 ths gomesy Sty tindets
/
o p i vl dindders
vl / vatia piare Mpsn 240 e s opispebeqed dhies ylipiess

140,20, bitfect of increasing thie ¢ glinder thiebnsss

Fvam Vg DAY, pilicn 3 0, [e, b 7, cat bre pghented so cotiirstisen

107,
2 1,2
gas [//I[ 'lu i
/
oy
v
YA Fow 4 g
AaM (Sires 1, 37 =1,y
e
"
/
i
#

which s shovn diagrammatically in Vig. 14.9.

Fig 149
‘This implies that for u cylinder of very large thickness,

(a) Atany point, the radial and the circumferential siresses are cual,
(h) 1o, =0, state of pure shiear exists everywhete in the cylinder,

(¢) Both g, and a3, are inversely propondonal 1o /%, Thus at 7= Arj, siresses
| ,
are only 6 of thefe maximum value, which means that a cylinder of k=254

T
miy be reasomably assumed 1o be o cylinder of infinite thickness.

The implication of this s that if the shape of the ouler boundary of the

ar but if all points on thiz

el iGNNGS . 0000000 2
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o 2 i
Fig 110 .
<o Teast 4 from the centre, the shape

« distance o at least =,
ary are ata dista

ary will not it
angular, yetitm

non-uniform bound

of such non-uniform bound
: e TR Y

though the outer shape is reclangu

el o rh e imrernal diameter of dhe evider vqu h.\dh‘uu'icj(“ﬁ i
~ Example 14.1. The intental« o ‘”\;y_\:_\'m?'!'_”” MPa. If tie vield strength
: the wall thickness,

ter. Thus for example i e 1400,
av be treated eylindrical as showg

100 mm. It is required 1o operate ;l i
2 s S
of the evlinder material is 40 MPa, caleuic

Sal. Lame's equations are,

b
=-3-d

(7 2

r

h
g.=—%+a

e

Here it is given that, @, = [0 MPa
= JON/mm? atr=350wmm

c,=0 at r=r, i.e.outer radius
r .
and o.=40MPa
. =dON/mm’ atr=350mm
[§
o l() = —': -
50°

40=—b—,+n
50"

Solving these, we get a=135
b=62500
b

Also 0= F -a

_ 62500

15

T

or ry=64.55 mm

« Thickness = 64.55 - 50 = 14.55 mm

and

S

01
THICK CYLINDERS
v ii\-||||;vlc 14,2, The pressirex at the outer atd the inner st face of a viinder
wre 20 MPa (gange) and atmospherie (e 2ero gange) lr.\';'c':-ll\'fl\‘. If the ,m.-",-
stress at the inner surface iy 0Q MPa (compressivel, deternine (s value at the
outer surfuce, |

Sol, Substituting the given boundary conditions i the Lume's cquations,

0= (‘)'-m' sitl)
Omiiag )
ri
and = o0 = ’) +a L)
o :

where 1 and r, are the inner and the outer radii of the eylinder tespectively.
From (if) and (i), we get,

ae= - 30

b
and vma= - 30

. Ly

From (i), a2 ra=20-30% - 10
rl“

< Hoop stress at the outer surtace,

1
Crany '~'“'_; +a
= <1030
/! = =40 N/mm® = 40 MUa (comp,)

Example WX I a thick evlinder with internal pressure of 6 MPa, the
ctrcumferential stress at the outside Murface iy 20 MPa, Caleulare the
circumferential stress at the inside surfuce and af the point where the radial
stress iy 3 MPa. Find out the longitudinal stregy i the evlinder is closed ar the
ends and the inside diameter is 200 mm. . .

Sal. The given conditions are,
T, =6 Mba
=0 N/mm' oty = r
O,=0w r=r
O, =20 NZmm® Wy oy

o
Substituting these in the Lame's cquations,

(]
6= "‘: -

' w()
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5C504 pi= internal pressure
Sol. Let
’ O'L.=1'6pl
Then r=r,
c,=p; & r=rli
Now, —Oatr=ritt=ro -
and
b_a
Pi=?_
— b
0:7—!1
AT
which give b=pi7_;a0e=Pi s
’ r,=r; 0 i
A+ .
b a=pL=16p, (given)
=—4+a=p; O p;
TR
247
=16
To—=Ti
o _2.082
which gives, —' =20
1
ie o082
s r
L1082
or P
!
or g]=0.541

14.7. STRAINS IN THICK CYLINDER
1. Change of diameter is directly proportional to the change in circu'mferencc

: C nfd+8d)-nd ..
Circumferential strain e l“—f—jL‘

-~
f

nIR

| =

= diameteral strain.

Therefore, diameteral strain is always calculated in the direcliar‘z of :c
(circumferential or the hoop stress) (Fig. 14.1) and for our notation, is given by
9
9

o, g
=g +VE —vf=%5[oc+v(0',-o,)]'

, ; . ot ils
. For the general case, assuming that the cylinder is closed with caps at!
ends, [Substituting for 6., 6, and o, from Eq. 14.5 and 14.17 (b),

(1419

THICK CYLINDERS | 505

<~ F 2 2 2 2
E(| 2 r,—r r,—=r

2
it Pi= P +p.-r,2 —pur,,]
i
22 2op? pl—pis
v{’r’n . p!_po_pr 1 ~Po aﬂpr i ~ Pty

2 2 2 2 2 2_?
r ro—ri o= o=

2
=’Q+ v) ﬁp;—ﬁ,,+(l -2v) P ‘Pv’gJ ..(14.20)

2 2 2 22
E r h-n £ To—Ti

In the case when the axial stress, o, is not present, this reduces to,

(4 2 2 2
E re rﬁ - r,2 E ry—r;

2 2
8%l+v R rPi=P, 1=V PTi =Py ..(14.21)

2. The radial strain (cansing radial shift) at any point in the cylinder is
calculated in the direction of the radial stress G, (Fig. 14.1) and is given by,
_—— sglven by.

£ .=

- é [o,+V (o, +0))] ...(14.22)

3. Volumetsic strain, £.= Change in volume _av
it S *" Original volume of the cylinder ~ V

Now volume, V=nrl
1% Vv

dvV= 3 dr+ L dL

= (2nrL) dr+ (nr%) dL

=nL [2 dr, d—"}

r L

dv_.,dr_dL
v : r + L

i.e., Volumetric strain =2 x diameteral (i.e. circumferential) strain

+ longitudinal strain
...(14.23)

Example 14.7. A cast steel cylinder of 600 mm external and 490 mm internal
diameters is subjected to an external pressure of 30 MPa. Calculate the decrease
in the external diameter of the cylinder. E = 200 GPa, v = 0.3.

ie., €,=2XEg +¢,

Sol. 6,=30N/mm? when r=300mm
=0 when =200 mm
30= bz—aand0= >—a
0 200
which give, b=-216x10"anda= - 54

. Hoop stress at external radius,
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